Electrostatic model to understand the influence of salt deposit in gfrp material during lightning discharges

##plugins.themes.academic_pro.article.main##

V. Sathiesh Kumar
Nilesh J. Vasa
R. Sarathi

Abstract

A methodical experimentation and mathematical modeling is carried out to study the influence of salt deposit on wind turbine blade material (Glass Fiber Reinforced Plastics/GFRP) during lightning discharges. Electrical discharge measurements combined with optical emission spectroscopy technique and electrostatics is utilized to understand the dynamics of surface discharge and the level of damage on GFRP material. COMSOL simulation studies shows that the electric field intensity on the surface of the polluted GFRP gets enhanced when compared to that of virgin GFRP, irrespective of the applied voltage profile and polarity. Flashover voltage, discharge current and optical emission spectroscopy measurements indicates that the deterioration of GFRP material is severe when there is an adhesion of salt deposit. It is also observed that the damage induced on GFRP material is severe for winter lightning (switching impulse voltage of 250/2500 μs) compared to that of summer lightning (lightning impulse voltage of 1.2/50 μs) due to a longer front and tail period of the pulse.

##plugins.themes.academic_pro.article.details##

How to Cite
Sathiesh Kumar, V., Vasa, N. J., & Sarathi, R. (2017). Electrostatic model to understand the influence of salt deposit in gfrp material during lightning discharges. Power Research - A Journal of CPRI, 37–46. Retrieved from https://node6473.myfcloud.com/~geosocin/CPRI/index.php/pr/article/view/134

References

  1. S. Chandrasekar, C. Kalaivanan, G. C. Montanari and A. Cavallini, "Partial discharge detection as a tool to infer pollution severity of polymeric insulators", IEEETrans. Dielectr.Electr.Insul.,Vol. 17, pp. 181-188, 2010.
  2. M . A. Douar, A. Mekhaldi and M. C. Bouzidi, "Flashover process and frequency analysis of the leakage current on insulator model under non-uniform pollution conditions", IEEETrans. Dielectr.Electr.Insul.,Vol. 17, pp. 1284-1297, 2010.
  3. I. L. Hosier, M. S. AbdRahman, A. S. Vaughan, A. Krivda, X. Kornmann and L. E. Schmidt, "Comparison of laser ablation and inclined plane tracking tests as a means to rank materials for outdoor HV insulators", IEEETrans. Dielectr. Electr.Insul.,Vol. 20, pp. 1808-1819, 2013.
  4. A . Mekhaldi, D. Namane, S. Bouazabia and A. Beroual, "Flashover of discontinuous pollution layer on HV insulators", IEEETrans. Dielectr.Electr.Insul.,Vol. 6, pp. 900-906, 1999.
  5. B. Moula, A. Mekhaldi and M. Teguar, "Evaluation of insulator’s energy under uniform pollution condition", 2nd IEEEEnergyconConf., pp. 975-978, 2012.
  6. B. Moula, A. Mekhaldi, M. Teguar and A. Haddad, "Characterization of discharges on non-uniformly polluted glass surfaces using a wavelet transform approach", IEEETrans. Dielectr.Electr.Insul.,Vol. 206, pp. 14571466, 2013.
  7. G. Zhicheng and C. Renyu, "Calculation of DC and AC flashover voltage of polluted insulators", IEEETrans. on Electr.Insul.,Vol. 25, pp. 723-729, 1990.
  8. H . H. Woodson and A. J. Mcelroy, "Insulators with contaminated surfaces, Part II- Modeling of discharge mechanisms", IEEETrans. on Power Apparatus and Systems, Vol. 89, pp. 1858-1867, 1970.
  9. K. L. Chrzan, H. Schwarz and H. Hausler, "Effect of impulse polarity on the flashover voltage of polluted cap and pin insulators", Proc. of 16th Intern. Symp.onHigh Voltage Engineering, pp. 1-5, 2009.
  10. M. A. Douar, A. Mekhaldi and M. C. Bouzidi, "Investigations on leakage current and voltage waveforms for pollution level monitoring under wetted and contaminated conditions", IETSci. Meas. Technol., Vol. 59, pp. 67-75, 2011.
  11. M . El-A. Slama, A. Beroual and H. Hadi, "Influence of the linear non-uniformity of pollution layer on the insulator flashover under impulse voltage-estimation of the effective pollution thickness", IEEETrans. Dielectr.Electr.Insul.,Vol. 18, pp. 384392,2011.
  12. N. Dhahbi Megriche and A. Beroual, "Dynamic model of discharge propagation on polluted surfaces under impulse voltages", IEEProc. Gener.Transm. Distrib.,Vol. 147, pp. 279-284, 2000.
  13. SH. Taheri, A. Gholami and M. Mirzaei, "Study on the behavior of polluted insulators under lightning impulse stress", Electric power components and systems, Vol. 37, pp. 1321-1333, 2009.
  14. "IEC 60507 standard: Artificial pollution test on high voltage insulators to be used in AC systems", CEI/JEC 507:1991, 1991.
  15. V . Cooray, "The lightning flash", IEEPower and Energy Series 34, London, 2003.
  16. "IEC publication 60: High-voltage test techniques: Part 1: General definitions and test requirements, second edition, 1989-11. Part 2: Measuring systems, second edition, 1994-11", 1994.
  17. "IEEESTD 4-1995: IEEE standard techniques for high-voltage testing.", 1995.
  18. "IEC-60112-Method for the determination of the proof and the comparative tracking indices of solid insulating material", BS EN 60112: 2003, 2003.
  19. V. Sathiesh Kumar, N. J. Vasa and R. Sarathi, "Study on pollution performance on a wind turbine blade using OES technique for lightning and switching impulse voltage profiles", JurnalTeknologi (Sciences and Engineering), Vol. 64, pp. 63-68, 2013.
  20. V. Sathiesh Kumar, N. J. Vasa and R. Sarathi, "Detecting salt deposition on a wind turbine blade using laser induced breakdown spectroscopy technique", J. Applied Physics A, Vol. 112, pp. 149-153, 2013.
  21. V. Sathiesh Kumar, NileshJ. Vasa, R. Sarathi, Daisuke Nakamura and Tatsuo Okada, "Understanding the discharge activity across GFRP material due to salt deposit under transient voltages by adopting OES and LIBS technique", IEEETrans. Dielectr. Electr.Insul.,Vol. 21, pp. 2283-2292, 2014.
  22. N. J. Vasa, T. Naka, S. Yokoyama, A. Wada and A. Asakawa, "Experimental study on lightning attachment manner considering various types of lightning protection measures on wind turbine blades", Proc. Intern. Conf. on Lightning Protection (ICLP), Kanazawa, Japan, pp. 1483-1487, 2006.
  23. M . G. Danikas, R. Sarathi, P. Ramnalis and S. L. Nalmpantis, "Analysis of polymer surface modifications due to discharges initiated by water droplet under high electric fields", World Academy of Science, Engineering and Technology, Vol. 50, pp. 871-876, 2009.
  24. S. Quisman, M. Steen Aanderson, J. Holboell and M. Henriksen, "GFR-materials resistance to lightning with respect to lightning protection of windmill wings", Intern. Conf. on Lightning and Static Electricity, pp. 1-7, 2003.
  25. S. F. Madsen, F. M. Larsen, L. B. Hansen and K. Bertelsen, "Breakdown tests of glass fiber reinforced polymers (GFRP) as a part of improved lightning protection of wind turbine blades", IEEEIntern.Sympos.Electr. Insul.(ISEI), pp. 484-491, 2004.
  26. "Nist handbook of basic atomic spectroscopic data, http://physics.nist.gov/ physrefdata/handbook/index.html", 2013.
  27. A. Descoeudres, CH. Hollenstein, R. Demellayer and G. Walder, "Optical emission spectroscopy of electrical discharge machining plasma", Journal of Physics D, Applied Physics, Vol. 37, pp. 875-882, 2004.
  28. T . Naka, N. J. Vasa, S. Yokoyama, A. Wada and S. Arinaga, "Investigation between electrostatic field analysis and results of lightning discharge experiment with wind turbine blades", Intern. Conf. on Lightning Protection (ICLP), Kanazawa, Japan, pp. 1-5, 2006.
  29. D. H. Gadani, V. A. Rana, S. P. Bhatnagar, A. N. Prajapati and A. D. Vyas, "Effect of salinity on the dielectric properties of water", Indian Journal of Pure and Applied Physics, Vol. 50, pp. 405-410, 2012.

Most read articles by the same author(s)