Analysis of Solar Power Variability Due to Seasonal Variation and its Forecasting for Jodhpur Region Using Artificial Neural Network
##plugins.themes.academic_pro.article.main##
Abstract
##plugins.themes.academic_pro.article.details##
References
- M. Osborne, “Gartner posts long range forecast for photovoltaic’s industry,” March 2009, http://www.pvtech.org/news/a/gartner posts long range forecast for photovoltaic industry.
- Yoo S, Lee E, Lee K. Buildingintegrated photovoltaics: a Korean case study.Solar Energy 1998;64:151–61.
- Amit Konar: Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain –CRC press 2000.
- Chaturvedi, D.K., Satsangi, P.S. & Kalra, P.K, Fuzzified Neural Network Approach for Load Forecasting Problems, Int. J. on Engineering Intelligent Systems, CRL Publishing, U.K., Vol. 9, No. 1, March 2001, pp.3-9.
- EI Desouky, A.A. and M.M. EI Kateb, 2000. Hybrid adaptive techniques for electric-load forecast using ANN and ARIMA, IEE. Proceedings, Gener. Trans. Distrib., 147: 213-217.
- Khotanzad, A.; Enwang Zhou; Elragal, H.; “A Neuro-Fuzzy Approach to Short Term Load Forecasting in a Price-Sensitive Environment”, IEEE Transactions on Power Systems, Vol.17, pp. 1273 – 1282, 2002.
- Chaturvedi, D.K., Mohan, M., and Kalra, P.K., Development of flexible neural network, Journal of the Institution of Engineers (India), CP, 83: 1–5, 2002.
- Devendra K. Chaturvedi: Soft computing Techniques and its Applications in Electrical Engineering - Springer- Verlag Berlin Heidelberg, 2008.
- Arbib, M.A. Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge, MA, 2003.
- Ricardo Marquez, Hugo T.C. Pedro, Carlos F.M. Coimbra, 2013. “Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs” Solar Energy 86 (7), 2017–2028.