Advances in steam turbines for solar thermal and integrated solar combined cycle power plants

##plugins.themes.academic_pro.article.main##

M. Siddhartha Bhatt

Abstract

This paper presents an overview of developments in steam turbines in general with particular application to match concentrating solar thermal (CST) sources.>p/p<>p/p

##plugins.themes.academic_pro.article.details##

How to Cite
Siddhartha Bhatt, M. (2014). Advances in steam turbines for solar thermal and integrated solar combined cycle power plants. Power Research - A Journal of CPRI, 531–550. Retrieved from https://node6473.myfcloud.com/~geosocin/CPRI/index.php/pr/article/view/796

References

  1. A Giostri, M Binotti, M Astolfi, P Silva, E Macchi, G Manzolini. Comparison of different solar plants based on parabolic trough technology Solar Energy 2012;86(5):1208-1221.
  2. A Fernández-García, E Zarza, L Valenzuela, M Pérez. Parabolic-trough solar collectors and their applications Renewable and Sustainable Energy Reviews 2010;14(7):1695-1721.
  3. R Ben-Zvi, M Epstein, and A Segal. Simulation of an integrated steam generator for solar tower Solar Energy 2012; 86(1):578-592.
  4. C Maffezzoni, F Parigi. Dynamic analysis and control of a solar power plant—I Dynamic analysis and operation criteria Solar Energy 1982; 28(2):105-116.
  5. S D Odeh, G L Morrison, and M Behnia. Modeling of parabolic through direct steam generation solar collectors Solar Energy 1998; 62(6):395-406.
  6. J Birnbaum, J F Feldhoff, M Fichtner, T Hirsch, M Jöcker, R Pitz-Paal, G Zimmermann. Steam temperature stability in a direct steam generation solar power plant Solar Energy 2011; 85(4):660-668.
  7. M Eck, E Zarza. Saturated steam process with direct steam generating parabolic troughs Solar Energy 2006;80(11):14241433.
  8. E Zarza, ME Rojas, L González, JM Caballero, F Rueda. INDITEP: The first pre- commercial DSG solar power plant Solar Energy 2006;80(10):1270-1276.
  9. JF Feldhoff, K Schmitz, M Eck, L Schnatbaum-Laumann, D Laing, F OrtizVives, F Schulte-Fischedick. Comparative system analysis of direct steam generation and Synthetic Oil parabolic trough power plants with integrated thermal storage Solar Energy 2012; 86(1): 520-530.
  10. A H Slocum, DS Codd, J Buongiorno, C Forsberg, T McKrell, JC Nave, CN Papanicolas, A Ghobeity, CJ Noone, S Passerini, F Rojas, A Mitsos. Concentrated solar power on Demand Solar Energy 2011; 85(7):1519-1529.
  11. A Ghobeity, C J Noone, CN Papanicolas, A Mitsos. Optimal time-invariant operation of A power and water cogeneration solar-thermal plant Solar Energy 2011; 85(9):2295-2320.
  12. W D Steinmann, M Eck. Buffer storage for direct steam generation Solar Energy 2006; 80(10):1277-1282.
  13. D Barlev, R Vidu, P Stroeve. Innovation in concentrated solar power Solar Energy Materials and Solar Cells 2011;95(10):27032725.
  14. M Leijon, A Skoglund, R Waters, A Rehn, M Lindahl. On the physics of power, energy And economics of renewable electric energy sources – Part I Renewable Energy 2010;35(8):1729-1734.
  15. A Hepbasli. A key review on exergetic analysis and assessment of renewable energy Resources for a sustainable future Renewable and Sustainable Energy Reviews 2008; 12(3): 593-661.
  16. M V Ments. Solar energy converters: The relationship between efficiencies and other Parameters Solar Energy1959; 3(1):44-50.
  17. R Baños, F Manzano-Agugliaro, FG Montoya, C Gil, A Alcayde, J Gómez. Optimization methods applied to renewable and sustainable energy: A review Renewable and Sustainable Energy Reviews 2011;15(4):1753-1766.
  18. A Ray. Nonlinear dynamic model of a solar steam generator Solar Energy 1981; 26(4): 297-306.
  19. L Valenzuela, E Zarza, M Berenguel, E F Camacho. Control concepts for direct steam generation in parabolic troughs Solar Energy 2005; 78(2):301-311.
  20. G Cau, D Cocco, V Tola. Performance and cost assessment of Integrated Solar Combined Cycle Systems (ISCCSs) using CO2 as heat transfer fluid Energy in Press, August 2012.
  21. X R Zhang, H Yamaguchi, D Unen, K Fujima, M Enomoto, N Sawada. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide Renewable Energy 2006;31(12):1839-1854.
  22. G Angelino, C Invernizzi. Binary conversion cycles for concentrating solar power technology Solar Energy 2008;82(7):637647.
  23. S E B Edwards, V Materić. Calcium looping in solar power generation plants Solar Energy 2012;86(9):2494-2503.
  24. J Muñoz, A Abánades, M José, Val Martínez. A conceptual design of solar boiler Solar Energy 2009; 83(9):1713-1722.
  25. G Mittelman, M Epstein. A novel power block for CSP systems Solar Energy 2010; 84 (10):1761-1771.
  26. M J Montes, A Abánades, J M Martínez-Val. Performance of a direct steam generation Solar thermal power plants for electricity production as a function of the solar multiple Solar Energy 2009; 83(5):679-689.
  27. G Barigozzi, G Bonetti, G Franchini, A Perdichizzi, S Ravelli. Thermal performance Prediction of a solar hybrid gas turbine Solar Energy 2012; 86(7):2116-2127.
  28. N Fraidenraich, J M Gordon, C Tiba. Optimization of gas-turbine combined cycles for solar energy and alternativefuel power generation Solar Energy 1992; 48(5):301-307.
  29. A Baghernejad, M Yaghoubi. Exergy analysis of an integrated solar combined cycle System Renewable Energy 2010; 35(10):2157-2164.
  30. R Hosseini, M Soltani, G Valizadeh. Technical and economic assessment of the integrated solar combined cycle Power plants in Iran Renewable Energy 2005;30(10):1541-1555.
  31. H Nezammahalleh, F Farhadi, M Tanhaemami. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology Solar Energy 2010;84(9):16961705.
  32. M J Montess, A Rovira, M Munoz, JM Martinez. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors, Applied Energy 2011; 88(9):3228-3238.
  33. K Koai, N Lior, H Yeh. Performance analysis of a solar-powered fuel-assisted Rankine Cycle with a novel 30 hp turbine Solar Energy 1984; 32(6):753-764.
  34. V Siva Reddy, S C Kaushik, S K Tyagi. Exergetic analysis of solar concentrator aided Natural gas fired combined cycle power plant Renewable Energy 2012; 39(1):114-125.
  35. M Livshits, A Kribus. Solar hybrid steam injection gas turbine (STIG) cycle Solar Energy 2012; 86(1):190-199.
  36. R J Zoschak, SF Wu. Studies of the direct input of solar energy to a fossil-fueled central station steam power plant Solar Energy 1975;17(5):297-305.
  37. L Valenzuela, E Zarza, M Berenguel, EF Camacho. Control scheme for direct steam Generation in parabolic troughs under recirculation operation mode Solar Energy 2006; 80(1): 1-17.
  38. F A A L Sulaiman, I Dincer, F Hamdullahpur. Exergy modeling of a new solar driven Trigeneration system Solar Energy 2011; 85(9):2228-2243.
  39. J Wang, Y Dai, G A O Lin, S Ma. A new combined cooling, heating and power system Driven by solar energy Renewable Energy 2009; 34(12):2780-2788.
  40. N T Raj, S Iniyan, R Goic. A review of renewable energy based cogeneration technologies Renewable and Sustainable Energy Reviews 2011; 15(8):3640-3648.
  41. M K Gupta, S C Kaushik. Exergy analysis and investigation for various feed water heaters of direct steam generation solar– thermal power plant Renewable Energy 2010;35(6):1228-1235.
  42. V A Prisyazhniuk. The turbine plant efficiency: Maximum efficiency attained and the share of individual stages, Applied Thermal Engineering 2008;28(11-12):13181323.
  43. Y S Kim, S Lorente and A Bejan. Distribution of size in steam turbine power plants, International Journal of Energy Research 2009;33(11):989 – 998.
  44. A Zaleta-Aguilar, L Correas-Uson, J Kubiak-Szyszkaand and FZ SierraEspinosa. Concept on thermo-economic evaluation of steam turbines, Applied Thermal Engineering 2007; 27(2-3):457466.
  45. Technology for the Power Generating Industry, Ed. W.G. Moore, Book No. G00877, ASME, New York, 1994:19-25.
  46. A Zaleta-Aguilar, LF Vega, A GallegosMuñoz and A Hernández-Guerrero. Thermodynamic characterization of the power loss factor in steam turbines Energy Conversion and Management 2002;43(17):2369-2378.
  47. M S Bhatt and N Rajkumar. Performance enhancement in coal fired thermal power plants. Part II: Steam turbines, Int. J. Energy Res., 23 (1999); 489-515.
  48. MS Bhatt. Enhancement of energy efficiency and loading of steam turbines through retrofitting 2-d designs with 3-d designs by, Journal of Scientific & Industrial Research No. 1, 2011; 70:64-70.
  49. A Drosdziok and Feldmuller. High efficiency steam turbines for coal-fired power plants, Siemens AG, Bereich Energieerzeugung (KWU), Freyeslbenstrabe 1, D-91058, Erlangen, Germany (2000).
  50. V Simon, H Oeynhausen, R Burkner and KJ Eich, Impulse Blading? Reaction Blading? Variable Reaction Blading! - A new generation steam turbine blading for highest efficiency, VGB Kraftwerkstechnik 1977; 7(9):648-652.
  51. V S P Chaluvadi, Kalfas, AI, Hodson, HP. Vortex transport and blade interactions in high pressure turbines Journal of Turbomachinery 2004; 126(3):395-405.
  52. K Kosowski, R Stepien. Theoretical investigations into flows in rotor blade shroud clearance Transactions of The Institute of Fluid-Flow Machinery 2003; 113.
  53. He, L Computation of unsteady flow through steam turbine blade rows at partial admission Journal of Power and Energy 1997;211(3):197-205.
  54. J Fu, J Liu, S Zhou. Experimental and numerical investigation of interaction between turbine stage and exhaust hood Journal proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2007;221:991-999.
  55. V I Gnesin, L V Kolodyazhnaya, R Rzadkowski. Numerical modeling of aeroelastic behavior for the turbine stage in 3D transonic flow, Journal of Thermal Science 2005;14(3):236-241.
  56. V I Gnesin. Aerodynamic Design and Testing of Three Low Solidity Steam Turbine Nozzle Cascades Journal of Thermal Science 2005;14(3):236-241.
  57. H Oeynhausen, A Drosdziok and M Deckers. Steam turbine for the new generation power plant, Siemens AG, Bereich Energieerzeugung (KWU), Freyeslbenstrabe 1, D-91058, Erlangen, Germany (2003).
  58. E Metcalfe and RB Scarlin. Advanced high efficiency steam turbine power plant, ABB Power Generation Ltd., Steam Power Plants (PSU), PO Box 58, Haselstrasse, CH-5401, Baden, Switzerland (2003).
  59. JI Cofer, JK Reinker and WJ Sumner. Advances in steam path technology, ASME paper 95-CTP-2, Journal of Engg. For Gas Turbines & Power 1996 ;( 118):337-352.
  60. LMZ, Retrofitting of steam turbines 200 MW, Leningradsky Metallichesky Zavod (LMZ), 18, Sverdlovskaya nab., 195009, St. Petersburg, Russia (2004).
  61. G Fiedler, Medium turbines revamping, GEC Alsthom, France (2004). Oscillating turbine blade row in 3-D transonic ideal flow Problems in Machinery Engineering 1999;1(2):65-76.
  62. J Grant and MJ Fischer. High performance turbines, Parsons Power Generation Systems Ltd., Newcastle upon Tyne NE6 2YL, England (2003).
  63. N Sakai, H Yoshida, T Harada, Y Imai. Application of CFD to Performance Evaluation of Steam Turbine Proc. International Conference on Power Engineering, Kobe, Japan, 2003; 211-216.
  64. P Lampart, S Yershov, A Rusanov. Increasing flow efficiency of high-pressure and low-pressure steam turbine stages from numerical optimization of 3D blading Engineering Optimization 2005; 37(2):145166 (22).
  65. S Havakechian and R Greim. Aerodynamic design of 50 percent reaction steam turbines, IMechE, C01698, 213, Pt. C, 1999, 1-25.
  66. M Deckers and D Doerwald. Steam turbine flow path optimization for improved efficiency, Siemens AG, Bereich Energieerzeugung (KWU), Freyeslbenstrabe 1, D-91058, Erlangen, Germany (2003).
  67. U Wieland, A Krischner, Havakechian S and Scarlin B. Advanced steam turbine blading for retrofit and repowering applications, PWR Vol. 26, Advances in Steam Turbine.
  68. W Kosman. Thermal analysis of cooled supercritical steam turbine components, Energy 2010; 35(2):1181-1187.
  69. P Beiss, E El-Magd, J Stuhrmann. Flow Behavior of Sandwich Structures for Cooling Thermally Highly Loaded Steam Turbine Components, Advanced Engineering Materials 2009;11(5):359 – 363.
  70. Sanjay, Onkar Singh and BN Prasad. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle, Applied Thermal Engineering 2008;28(17-18):2315-2326.
  71. J C García, J Kubiak, F Sierra, G Urquiza, JA Rodríguez. Numerical analysis of the blade forces caused by wake/blade interaction in the last stage of a steam turbine, Proceedings of the ASME Power Conference 2007 (2007); 283-289.
  72. W Zorner. Steam turbines for power plants employing advanced steam conditions, Siemens AG, Bereich Energieerzeugung (KWU), Freyeslbenstrabe 1, D-91058, Erlangen, Germany (1995).
  73. N Sakai, T Harada, Y Imai. Numerical study of partial admission stages in steam turbine: (Efficiency improvement by optimizing admission arc position) JSME International Journal, Series B: Fluids and Thermal Engineering 2006;49(2):212-217.
  74. W Kosman, M Roskosz and K Nawrat. Thermal elongations in steam turbines with welded rotors made of advanced materials at supercritical steam parameters Applied Thermal Engineering 2009;29(16):33863393.
  75. J Spelling, M Jöcker, A Martin. Annual performance improvement for solar steam Turbines through the use of temperaturemaintaining modifications, Solar Energy 2012;86(1): 496-504.
  76. M S Bhatt, RP Mandi, S Jothibasu and N Rajkumar. Performance enhancement in coal Fired thermal power plants. Part IV: Overall system, Int. J. Energy Res., 23 (1999) 1239-1266.
  77. R B Scarlin. Advanced high-efficiency turbines utilizing improved materials, IMechE, C522/020, 1997:49-63.
  78. A Drosdziok and W Zorner. Improving the thermodynamic efficiency of steam turbine condensers with partial tube replacement and an advanced tube bundle design, Siemens AG, Bereich Energieerzeugung (KWU), Freyeslbenstrabe 1, D-91058, Erlangen, Germany (2002).

Most read articles by the same author(s)