Fast Recovery Studies on Thermal Window based Dielectric for HTS Cable

##plugins.themes.academic_pro.article.main##

Harris K. Hassan
Abhay Singh Gour

Abstract

High Temperature Superconducting (HTS) cables have remarkable electric power transmission characteristics compared to conventional power cables. Thus, HTS cables are suitable for the sustainable electrical grids of the future. Electric faults of various origins and durations are inevitable in a commercial electric power transmission network. The integration of HTS cables to these networks requires reliable cable operation under fault conditions. However, it was found that HTS cables require a long recovery interval after the fault and subsequent quench. It is primarily attributed to the high thermal resistance of the cable dielectric layer. An innovative dielectric design is proposed in this article to improve the thermal performance of HTS cables and the results are compared with that of a conventional HTS cable. Transient thermal analysis was carried out to determine the recovery interval and the electric insulation characteristics were studied using an electrostatic analysis. Both studies were performed using Finite Element Analysis (FEA). It was found that a reduction in the recovery interval is possible without deterioration in the electric insulation level.

##plugins.themes.academic_pro.article.details##

How to Cite
Hassan, H. K. ., & Gour, A. S. . (2022). Fast Recovery Studies on Thermal Window based Dielectric for HTS Cable. Power Research - A Journal of CPRI, 18(1), 77–83. https://doi.org/10.33686/pr.v18i1.1100

References

  1. Hu N, et al. Fault current analysis in a tri-axial HTS cable. IEEE Transactions on applied superconductivity. 2010; 20(3):1288–91. https://doi.org/10.1109/ TASC.2010.2042941 DOI: https://doi.org/10.1109/TASC.2010.2042941
  2. Sato Y, Agatsuma K, Wang X, Ishiyama A. Temperature and pressure simulation of a high-temperature superconducting cable cooled by subcooled LN2 with fault current. IEEE Transactions on Applied Superconductivity. 2014; 25(3):1– 5. https://doi.org/10.1109/TASC.2014.2387119 DOI: https://doi.org/10.1109/TASC.2014.2387119
  3. Kim S, et al. Investigation on the stability of HTS power cable under fault current considering stabilizer. IEEE Transactions on Applied Superconductivity. 2007; 17(2):1676–9. https://doi.org/10.1109/TASC.2007.899208 DOI: https://doi.org/10.1109/TASC.2007.899208
  4. Study committee SC21 HV insulated cables. High Temperature Superconducting Cable System. Italy : Cigré; 2003.
  5. Tuncer E, Zuev YL, Sauers I, James DR, Ellis AR. Electrical properties of semiconducting tapes used in HTS power cables. IEEE transactions on applied superconductivity. 2007; 17(2):1497–500. https://doi.org/10.1109/ TASC.2007.899961 DOI: https://doi.org/10.1109/TASC.2007.899961
  6. Masuda T, et al. Design and experimental results for Albany HTS cable. IEEE Transactions on Applied Superconductivity. 2005; 15(2):1806–9. https://doi. org/10.1109/TASC.2005.849296 DOI: https://doi.org/10.1109/TASC.2005.849296
  7. Gawith JDD, et al. An HTS power switch using YBCO thin film controlled by AC magnetic field. Superconductor Science and Technology. 2019; 32(9). https://doi. org/10.1088/1361-6668/ab2d61 DOI: https://doi.org/10.1088/1361-6668/ab2d61
  8. Hu, N., et al. Transient thermal analysis of a triaxial HTS cable on fault current condition. Physica C: Superconductivity. 2013; 494:276–9. https://doi. org/10.1016/j.physc.2013.05.012 DOI: https://doi.org/10.1016/j.physc.2013.05.012
  9. Hu N, Toda M, Watanabe T, Tsuda M, Hamajima T. Recovery time analysis in a tri-axial HTS cable after an over-current fault. Physica C: Superconductivity and its applications. 2011; 471(21–22):1295–9. https://doi. org/10.1016/j.physc.2011.05.181 DOI: https://doi.org/10.1016/j.physc.2011.05.181
  10. de Sousa, WTB, Kottonau D, Noe M. Transient simulation and recovery time of a three-phase concentric HTS cable. IEEE Transactions on Applied Superconductivity. 2019; 29(5):1–5. https://doi.org/10.1109/TASC.2019.2900937 DOI: https://doi.org/10.1109/TASC.2019.2900937
  11. Li, Ming Z, et al. Temperature and current distribution of high temperature superconducting cable itself under large fault current. 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE; 2015. https://doi.org/10.1109/ ASEMD.2015.7453510 DOI: https://doi.org/10.1109/ASEMD.2015.7453510
  12. Takahashi T, et al. Dielectric properties of 500 m long HTS power cable. IEEE Transactions on Applied Superconductivity. 2005; 15(2):1767–70. https://doi. org/10.1109/TASC.2005.849281 DOI: https://doi.org/10.1109/TASC.2005.849281
  13. Choi YS, Kim DL, Shin DW, Hwang SD. Thermal property of insulation material for HTS power cable. AIP Conference Proceedings. 2012; 1434(1):1305–12. https:// doi.org/10.1063/1.4707055. PMid:22042559 DOI: https://doi.org/10.1063/1.4707055
  14. Choi YS, Kim DL. Thermal property measurement of insulating material used in HTS power device. Cryogenics. 2012; 52(10):465–70. https://doi.org/10.1016/j.cryogenics. 2012.05.003 DOI: https://doi.org/10.1016/j.cryogenics.2012.05.003
  15. Manfreda G. Review of ROXIE’s material properties database for quench simulation. TE Technology Department Internal Note; 2011. p. 35.
  16. Iwasa, Yukikazu. Case studies in superconducting magnets: design and operational issues. Springer Science & Business Media; 2009. DOI: https://doi.org/10.1007/b112047_1
  17. Tuncer, Enis, et al. Electrical properties of commercial sheet insulation materials for cryogenic applications. 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena; 2008. https://doi.org/10.1109/ CEIDP.2008.4772931 DOI: https://doi.org/10.1109/CEIDP.2008.4772931
  18. Jensen, JE, Stewart RG, Tuttle WA, Brechna H. Brookhaven national laboratory selected cryogenic data notebook: Sections I-IX (Vol. 1). Brookhaven National Laboratory; 1980.
  19. Tuncer E, Polizos G, Sauers I, James DR, Ellis AR, Messman JM, Aytuğ T. Polyamide 66 as a cryogenic dielectric. Cryogenics. 2009; 49(9):463–8. https://doi.org/10.1016/j. cryogenics.2009.06.008 DOI: https://doi.org/10.1016/j.cryogenics.2009.06.008
  20. Schmidt F, Allais A. Superconducting cables for power transmission applications-a review. In Paper submitted to Proceedings of this workshop; 2004.
  21. Yumura H, et al. 30 m YBCO cable for the Albany HTS cable project. Journal of Physics: Conference Series. 2008; 97(1). https://doi.org/10.1088/1742-6596/97/1/012076 DOI: https://doi.org/10.1088/1742-6596/97/1/012076
  22. Yumura H, et al. Phase II of the Albany HTS cable project. IEEE Transactions on Applied Superconductivity. 2009; 19(3):1698–701. https://doi.org/10.1109/ TASC.2009.2017865 DOI: https://doi.org/10.1109/TASC.2009.2017865
  23. Del-Rosario-Calaf G, Lloberas-Valls J, Sumper A, Granados X, Villafafila-Robles R. Modeling of second generation HTS cables for grid fault analysis applied to power system simulation. IEEE Transactions on Applied Superconductivity. 2012; 23(3):5401204-https://doi. org/10.1109/TASC.2012.2236673 DOI: https://doi.org/10.1109/TASC.2012.2236673