Assessment of Novel Metrics for Different VSI Control Strategies in a Micro-Grid

##plugins.themes.academic_pro.article.main##

N. S. Suresh
S. Arul Daniel

Abstract

Interest in the integration of renewable energy with utility network and Distributed Generation (DG) using inverters is on the rise. The parallel operation of inverters must be studied closely for achieving better power quality. Issues in controlling these parallel connected inverters to a micro-grid have been brought to focus in this paper. This paper defines metrics for comparing the various control strategies for grid-connected inverters. Ten such control strategies are taken up and evaluated against the proposed eight metrics. The results of the comparison are presented in this paper.

##plugins.themes.academic_pro.article.details##

How to Cite
Suresh, N. S., & Arul Daniel, S. (2018). Assessment of Novel Metrics for Different VSI Control Strategies in a Micro-Grid. Power Research - A Journal of CPRI, 169–177. https://doi.org/10.33686/pwj.v14i2.144577

References

  1. Tuladhar KMA, Jin H, Unger T. Control of parallel inverters in distributed AC power systems with considerations of line impedance effect. IEEE Transactions on Industry Applications. 2000; 36:131–8. https://doi.org/10.1109/28.821807
  2. Guerrero JM, Matas J, De Vicuna JG, Castilla M. Wireless-control strategy for parallel operation of distributedgeneration inverters. IEEE Transactions on Industrial Electronics. 2006; 53:1461–70. https://doi.org/10.1109/ TIE.2006.882015
  3. Ramos R, Biel D, Fossas E, Guinjoan F. Interleaving quasi sliding-mode control of parallel connected buck-based inverters, IEEE Transactions on Industrial Electronics. 2008; 55:3865–73. https://doi.org/10.1109/TIE.2008.2006016
  4. Zhong QC. Control of parallel connected inverters to achieve proportional load sharing. IFAC Proceedings. 2011; 18:2785–90. https://doi.org/10.3182/201108286-IT-1002.00928
  5. Coelho EAA, Cortizo PC, Garcia PFD. Small-signal stability for parallel-connected inverters in stand-alone ac supply systems. IEEE Transactions on Industrial Electronics. 2002; 38:533–42. https://doi.org/10.1109/28.993176
  6. Ramos R, Biel D, Fossas E, Guinjoan F. Interleaving quasislidingmode control of parallel-connected buck-based inverters. IEEE Transactions on Industrial Electronics. 2008:3865–73. https://doi.org/10.1109/TIE.2008.2006016
  7. Gabe IJ, Montagner VF, Pinheiro H. Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter. IEEE Transactions on Power Electronics. 2009; 24:1444–52. https://doi.org/10.1109/ TPEL.2009.2016097
  8. Ghanbari T, Azarm V, Iraji F, Farjah E. A simplified load sharing control for parallel inverters in microgrid. International Conference on Environment and Electrical Engineering; 2017. https://doi.org/10.1109/EEEIC.2017.7977571. PMCid:PMC5329171
  9. Hornik T, Zhong QC. Control of power inverters in renewable energy and smart grid integration. John Wille and Sons; 2013. p. 251–358.
  10. Avelar HJ, Parreira WA, Vieira JB, De Freitas LCG, Coelho EAA. A state equation model of a single phase grid-connected inverter using a droop control scheme with extra phase shift control action. IEEE Transactions on Industrial Electronics. 2012; 59:1527–37. https://doi.org/10.1109/TIE.2011.2163372
  11. Guerrero JM, de Vicuna LG, Matas J, Castilla M, Miret J. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Transactions on Power Electronics. 2004; 19:1205–13. https://doi.org/10.1109/TPEL.2004.833451
  12. Green TC, Prodanovi M. Control of inverter-based microgrids. Electric Power System Research. 2007; 77:1204–13. https://doi.org/10.1016/j.epsr.2006.08.017
  13. Hamzeh M, Karimi H, Mokhtari H. A new control strategy for a multi-bus MV microgrid under unbalanced conditions. IEEE Transactions on Plasma Science. 2012; 27:2225–32. https://doi.org/10.1109/TPWRS.2012.2193906
  14. Zhong QC. Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Transactions on Industrial Electronics. 2013; 60:936–45. https://doi.org/10.1109/ TIE.2012.2189542
  15. Kawamura A, Haneyoshi T, Hoft RG. Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor. IEEE Transactions on Power Electronics. 1988; 3:118–25. https://doi.org/10.1109/63.4341
  16. Ramos R, Biel D, Guinjoan F, Fossas E. Sliding-mode control design applied to parallel-connected modular inverters through FPGA-based implementation. IET Control Theory and Applications. 2009; 3:1611–24. https://doi.org/10.1049/ iet-cta.2008.0187
  17. Yang ZQS, Lei Q, Peng FZ. A robust control scheme for grid-connected voltage source inverters. IEEE Transactions on Industrial Electronics. 2011; 58:202–12. https://doi.org/10.1109/TIE.2010.2045998
  18. Hu JF, Zhu JG, Platt G. A droop control strategy of parallelinverterbased microgrid. 2011 International Conference on Applied Superconductivity and Electromagnetic Devices, ASEMD 2011; 2011. p. 188–91.
  19. Boudoudouh S, Maaroufi M. Multi agent system solution to microgrid implementation. Sustainable Cities and Society. 2017 May; 39:252–61. https://doi.org/10.1016/j.scs.2018.02.020
  20. Guerrero JM, Matas J, De Vicuna LG, Castilla M, Miret J. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Transactions on Industrial Electronics. 2007; 54:994– 1004. https://doi.org/10.1109/TIE.2007.892621
  21. Chen H, Zhang X, Liu S, Yang S. Research on control strategies for distributed inverters in low voltage micro-grids. 2nd International Symposium on Power Electronics for Distributed Generation Systems. PEDG 2010; 2010. p. 748–52.
  22. Tan KT, Peng XY, So PL, Chu YC. Centralized control for parallel operation of distributed generation inverters in microgrids. IEEE Transactions on Smart Grid; 2012. https://doi.org/10.1109/TSG.2012.2205952
  23. Kamel KNRM, Chaouachi A. Three control strategies to improve the microgrid transient dynamic response during isolated mode: A comparative study. IEEE Transactions on Industrial Electronics. 2013; 40:1314–22. https://doi.org/10.1109/TIE.2012.2209609
  24. Bahrani B, Kenzelmann S, Rufer A. Multivariable-PIbased dq current control of voltage source converters with superior axis decoupling capability. IEEE Transactions on Industrial Electronics. 2011; 58:3016–26. https://doi.org/10.1109/TIE.2010.2070776
  25. Dannehl J, Wessels C, Fuchs FW. Limitations of voltageoriented PI current control of grid-connected PWM rectifiers with LCL filters. IEEE Transactions on Industrial Electronics. 2009; 56:380–88. https://doi.org/10.1109/ TIE.2008.2008774
  26. Vandoorn TL, Meersman B, Degroote L, Renders B, Vandevelde L. A control strategy for islanded microgrids with DC-link voltage control. IEEE Transactions on Power Delivery. 2011; 26:703–13. https://doi.org/10.1109/ TPWRD.2010.2095044
  27. Bouzid AM, Sicard P, Cheriti A, Bouhamida M, Benghanem M. Structured H infinity design method of PI controller for grid feeding connected voltage source inverter. 3rd International Conference on Control, Engineering and Information Technology, CEIT 2015; 2015. https://doi.org/10.1109/CEIT.2015.7233086. PMid:25448703
  28. Manenti F, Rossi F, Goryunov AG, Dyadik VF, Kozin KA, Nadezhdin IS, Mikhalevich SS. Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier. Resource-Efficient Technologies. 2015; 1:10–18. https://doi.org/10.1016/j.reffit.2015.07.001
  29. Teodorescu R, Blaabjerg F, Liserre M, Loh PC. Proportionalresonant controllers and filters for grid-connected voltage-source converters. IEEE Proceedings - Electric Power Applications. 2006; 153:750. https://doi.org/10.1049/ ip-epa:20060008
  30. Shen G, Zhu X, Zhang J, Xu D. A new feedback method for PR current control of LCL-filter-based grid-connected inverter. IEEE Transactions on Industrial Electronics. 2010; 57:2033–41. https://doi.org/10.1109/TIE.2010.2040552
  31. Seifi K, Moallem M. An adaptive PR controller for synchronizing grid-connected inverters. IEEE Transactions on Industrial Electronics; 2018. https://doi.org/10.1109/ TIE.2018.2838098
  32. Mao H, Yang X, Chen Z, Wang Z. A hysteresis current controller for single-phase three-level voltage source inverters. IEEE Transactions on Power Delivery. 2012; 27:3330–9. https://doi.org/10.1109/TPEL.2011.2181419
  33. Milosevic M. Hysteresis current control in three-phase voltage source inverter; 2013. p. 1–15.
  34. Zare F, Ledwich G. A hysteresis current control for single-phase multilevel voltage source inverters: PLD implementation. IEEE Transactions on Power Delivery. 2002; 17(5):731–8. https://doi.org/10.1109/TPEL.2002.802192
  35. Parisio A, Rikos E, Glielmo L. A model predictive control approach to microgrid operation optimization. IEEE Transactions on Control Systems Technology. 2014; 22(5):1813–27. https://doi.org/10.1109/TCST.2013.2295737