Performance of Phasor Measurement Units under Harmonic Influences

##plugins.themes.academic_pro.article.main##

P. Kaliappan
S. Sudha

Abstract

The performance of Phasor Measurement Units (PMUs) is essential and must ensure accuracy before installation in the substation. In the field, various interference conditions would occur in the power systems and were tested as per IEC/IEEE 60255.118.1:2018. Three number of PMUs from different manufacturers was configured for the M-class and P-class requirements. They were tested for two interference condition scenarios. The first case injected single harmonics with the input to test the impacts on accuracy. The second scenario was considered for inter-harmonics and checked the accuracy of PMUs. This will be useful in selecting high-quality PMUs, to obtain the most precise and dependable measurements under real-time power system operating conditions, the testing procedures, findings, and analysis are presented in this paper.

##plugins.themes.academic_pro.article.details##

How to Cite
Kaliappan, P., & Sudha, S. (2024). Performance of Phasor Measurement Units under Harmonic Influences. Power Research - A Journal of CPRI, 20(1), 69–73. https://doi.org/10.33686/pwj.v20i1.1166

References

  1. IEC/IEEE 60255-118-1. Measuring Relays and Protection Equipment-Part 118-1: Synchrophasor for Power SystemsMeasurements; 2018.
  2. IEEE Synchrophasor Measurement Test Suite Specificationversion 3; 2019.
  3. Kaliappan P, Selvan MP. M class synchrophasor compliance for real time monitoring of smart power systems. Journal of The Institution of Engineers (India): Series B, Springer. 2021. https://doi.org/10.1007/s40031021-00596-4 DOI: https://doi.org/10.1007/s40031-021-00596-4
  4. Kaliappan P, Meera KS, Selvan MP. Assessment of compliance of Phasor Measurement Units (PMUs) for smart grid applications. International Transactions on Electrical Energy Systems. 2021; 31:4. https://doi.org/10.1002/20507038.12835 DOI: https://doi.org/10.1002/2050-7038.12835
  5. Ghiga R, Wu Q, Martin K, Ziad W, Cheng L, Nielsen AH. Dynamic PMU compliance test under C37.118.1aTM-2014. Denver, CO: Proc IEEE PES General Meeting; 2015. p. 1-5. https://doi.org/10.1109/ PESGM.2015.7285970 DOI: https://doi.org/10.1109/PESGM.2015.7285970
  6. Phadke A, Kasztenny B. Synchronized phasor and frequency measurement under transient conditions. IEEE Trans Power Del. 2009; 24(1):89-95. https://doi.org/10.1109/ TPWRD.2008.2002665 DOI: https://doi.org/10.1109/TPWRD.2008.2002665
  7. Macii D, Petri D, Zorat A. Accuracy analysis and enhancement of DFT-based synchrophasor estimators in off-nominal conditions. IEEE Trans Instrum Meas. 2012; 61(10):2653-64. https://doi.org/10.1109/TIM.2012.2199197 DOI: https://doi.org/10.1109/TIM.2012.2199197
  8. Kamwa I, Pradhan AK, Joos G. Adaptive phasor and frequency tracking schemes for wide-area protection and control. IEEE Trans Power Del. 2011; 26(2):744-53. https:// doi.org/10.1109/TPWRD.2009.2039152 DOI: https://doi.org/10.1109/TPWRD.2009.2039152
  9. Karimi-Ghartemani M, Ooi BT, Bakhshai A. Application of enhanced phase-looked loop system to the computation of synchrophasor. IEEE Trans Power Del. 2011; 26(1):22-32. https://doi.org/10.1109/TPWRD.2010.2064341 DOI: https://doi.org/10.1109/TPWRD.2010.2064341
  10. de la O Serna JA. Dynamic phasor estimates for power system oscillations. IEEE Trans Instrum Meas. 2007; 56(5):1648-57. https://doi.org/10.1109/ TIM.2007.904546 DOI: https://doi.org/10.1109/TIM.2007.904546
  11. de la O Serna JA. Dynamic phasor estimates for power system oscillations and transient detection in Proc. Montreal, QC, Canada: IEEE PES General Meeting; 2006. p. 1-7. https://doi.org/10.1109/PES.2006.1709092 DOI: https://doi.org/10.1109/PES.2006.1709092
  12. Platas-Garza MA, de la O Serna JA. Dynamic phasor and frequency estimates through maximally flat differentiators. IEEE Trans Instrum Meas. 2010; 59(7):1803-11. https://doi.org/10.1109/TIM.2009.2030921 DOI: https://doi.org/10.1109/TIM.2009.2030921
  13. Zhan L, Liu Y. Improved WLS-TF algorithm for dynamic synchronized angle and frequency estimation. National Harbor, MD: Proc IEEE PES General Meeting; 2014. p. 1–5. https://doi.org/10.1109/PESGM.2014.6938906 DOI: https://doi.org/10.1109/PESGM.2014.6938906