
1.0 INTRODUCTION

Modbus is an application layer protocol that
provides master and slave or client and server
communications between devices connected
to different buses or networks, it's basically a
network protocol, whose primary purpose was
to build a network from PLCs but its scope
has grown exponentially as it is now used in
plethora of different applications. There are three
variations of the Modbus protocol according to
the messages sending on the channel, i.e. Modbus
RTU, Modbus ASCII and Modbus TCP/IP.
Usually, the Modbus message contains three
main fields, including recipient address, protocol
data unit (PDU) and error checking field. The
Modbus protocol has been extensively used in
industrial control systems because of its ability
to be fast and reliable. The Modbus TCP/

IP version is being used extensively because
so many of our devices are today Ethernet
and TCP-compatible. Thus work was done on
the TCP/ IP version of the Modbus protocol.
The Modbus protocol provides real-time
communication between field devices that
are located far away from each other via the
Internet. The Modbus protocol consists of an
OSI application layer messaging protocol and
base with a client/server architecture model.
The interconnectivity between devices can be
achieved by employing the TCP/IP protocols
that enable an exchange of messages via the
Internet. Communication is started at the client
by building an application data unit (ADU), and
function codes that are placed in order to define
the Modbus messaging meaning and the actions
that shall be taken by the target device [1,6].

The Journal of CPRI,
Vol. 13, No. 3, September 2017 pp. 423-432

Hardening of the modbus protocol

Varun M Rao*, Rajesh Kalluri** and Ganga Prasad G L**

A large section of industrial control where network security is of paramount importance and where
glitches can cause massive disruptions in societies has mostly been overlooked and ignored in recent
times. Modern critical infrastructure assets (e.g., power plants, refineries and water supply systems) use
ICT systems to provide reliable services and offer new features. Many maintenance and management
operations at these installations involve the use of SCADA systems are controlled remotely using public
networks, mostly over the Internet. While the automation and inter connectivity contribute to increased
efficiency and reduced costs, they expose critical installations to new threats. Thus, issues relevant
to the securing of this information when it's being transmitted via unsafe channels and unsecured
protocols were chosen to be addressed. Various protocols that are used have either no provisions
for secure transmission of its information or have outdated security structures. Our focus was on the
Modbus protocol because of its wide application and lack of security features in the protocol structure.
The objective was to establish a novel approach to the transmission via the Modbus protocol preserving
the lower level attributes of transmission and at the same time adding a layer of security without adding
significant delay.

Keywords: Modbus, security, SCADA, ICT, encryption, key exchange,CHAP

*varun.mrao@gmail.com, PES Institute of Technology, Bangalore, India.
** gpr@cdac.in, rajeshk@cdac.in, Centre for development of advanced computing, Bangalore

424 The Journal of CPRI, Vol. 13, No. 3, September 2017

In figure 1, a header that is referred to as the
Modbus application protocol header (MBAP) is
employed to identify the Modbus ADU while the
data is carried over the TCP/IP network; this is
added irrespective of whether it's a request from
the client side or a response from the server end.
In Modbus TCP/IP, the CRC and the Slave ID get
dropped and replaced by the MPAB header as can
be seen in figure 1.

FIG 1: MODBUS TCP/IP AND MODBUS RTU/ASCII
PDU

Modbus memory addresses which are used are
referenced as coils (read/write - boolean), discrete
input (read only - boolean), input registers (read
only - int) and holding registers (read/write -
int). Modbus protocol defines several function
codes to access and manipulate the data in these
memory addresses. Like for instance Modbus
function code 1 is used to request the state of the
Coils which is a boolean value (0 or 1).

Section two of this paper dwells into the
vulnerabilities associated with the protocol and
thus justifies the hardening of the protocol. Section
three mainly talks about the experimental setup
used for simulations before and after hardening
from which the delays associated with hardening
could be determined and thus draw inferences
from our experiments. Section four elaborates the
hardening methods and section five talks about
the results and delays associated with different
layers of hardening. Section six lays down the
conclusions that can be drawn from observations
in section five.

2.0 MODBUS VULNERABILITIES

The Modbus TCP protocol lacks provisions for
protecting confidentiality and for verifying the
integrity of messages sent between a master and
slaves. Modbus TCP does not authenticate the
master and slaves. Gabor, et al through a series of

case studies [4] explains to us that notwithstanding
that the Modbus protocol has been susceptible to
forms of security attacks because of the absence
of security provisions within the protocol in the
past, [4] that he believes that the expanse of the
internet has contributed to the increase in security
attacks on the devices communicating via Modbus,
thus justifying the need for hardening of the
protocol. The protocol does not incorporate any
anti-repudiation or anti-replay mechanisms. The
security limitations of Modbus can be exploited
by attackers to wreak havoc on industrial control
systems.[2,3,5]

Some of the vulnerabilities with Modbus protocol
are:

●	 Unauthenticated Command Execution: The
lack of authentication of the master and
slaves means that an attacker can send forged
Modbus messages. In order to execute this
attack, the attacker must be able to access the
network that hosts the SCADA servers or the
field network that hosts the slaves.

●	 Modbus Denial-of-Service Attacks: An
example attack involves impersonating the
client and sending meaningless messages
to the server that cause them to expend
processing resources and eventually crash.

●	 Man-in-the-Middle Attacks: The lack of
integrity checks enables an attacker who has
access to the production network to modify
legitimate messages or fabricate messages
and send them to the server and also view
communications that go on across the
network.

●	 Replay Attacks: The lack of security
mechanisms enables an attacker to reuse
legitimate Modbus messages sent to or from
clients.

3.0 EXPERIMENTAL SETUP

To understand the impact analysis of an attack,
an experimental setup is required [9,10]. Before
hardening, a Modbus simulator needed to be
chosen so that protocol could be hardened and
tested on the simulator and also aid in measuring

The Journal of CPRI, Vol. 13, No. 3, September 2017 425

the performance of the hardened protocol. Using
this criterion uModbus was selected as the
simulator for our project and various versions of
the simulator were developed for hardening and
testing.

First, one simulator setup was developed which
had a UI and the user could observe the hardening.
Another version was designed with optimized
codes specifically for measuring delay before and
after hardening. Finally a version was designed to
prove that the simulator works in a “real world
environment” as it runs ideally for an infinite
time period memory locations certain real world
values and data type and proved the validity of
the system.

For the purpose of simulating a “real world
environment”, the memory was broken up
into multiple real world instances like voltage,
frequency, circuit breakers etc. The server was
also pre-initialized with values in the range of
these real world values. JSON's were used for
defining the instances and also the type (analog/
digital), names, tags, data types and whether or
not these values can be rewritten or not, data
addresses.

The idea was to prove the robustness of the
concept of hardening in a real world scenario, so
the client and server were running forever .The
hardened Modbus protocol worked just as well as
the normal unhardened Modbus protocol with a
slight delay. The program did not crash and thus
proving that the simulator was working without
any glitches and can run in a real world scenario
where data is continuously being updated. In
the process floating point data support was also
integrated into the simulator. The float value was
split and stored in two memory addresses.

4.0 HARDENING OF THE PROTOCOL

The TCP version of the Modbus protocol introduces
complexity with respect to managing the reliable
delivery of messages and at the same time
maintaining strong real-time constraints. As was
seen in section three on Modbus vulnerabilities,
the protocol is susceptible to many different types

of attacks; the Unauthorized Command Execution
and Man in the Middle attacks were identified as
the problems that this hardening approach would
be able to tackle.

This paper suggests a novel approach to harden
the Modbus protocol. To harden the protocol
against attacks a twofold approach was used:-

1. Encrypt the data so that the data in flight can
be secured.

2. Authenticate the clients with tailor made
multiple authentication schemes for modbus
protocol.

The encryption helps prevent people intercepting
the data from understanding the functions being
performed and thus shields the user from a Man
in the Middle attack. The authentication helps
prevent unauthenticated clients from accessing
information and generating random packets. Both
authentication schemes are compared to measure
efficiency.

4.1.	 Encryption

Encryption is a process of disguising a message
or information with a certain way so unauthorized
people do not understand the content of the
message or information. Encryption has a close
relation to the decryption process. There are
thousands of encryption schemes out there and a
decision needed to be made on what encryption
scheme could be chosen and this was done taking
into consideration two important features in the
encryption schemes:-

1. It needs to be extremely fast because of the
Modbus protocol's real time constraints and
the nature of applications where the protocol is
used. A high delay would defeat the point of the
hardened protocol.

2. It needs to be reliable, unbroken and “tried and
tested”. This will ensure there is no possibility
of people being able to break the encryption and
obtain the data anyways, again defeating the
purpose of the entire hardened protocol.

426 The Journal of CPRI, Vol. 13, No. 3, September 2017

Based on these requirements Advanced Encryption
Scheme (AES) was chosen as the encryption
scheme instead of ones like DES, Blowfish,
Hummingbird etc.[7,8] since it's extremely fast
and reliable.

For this implementation, the pyCrypto module
was used which the AES (Advanced Encryption
Scheme) algorithm had written in python, so this
was integrated into the server and client code
wherever there was a transmission of data via the
Modbus port 502. All the requests and responses
were encoded using AES(Advanced Encryption
Scheme)and then sent over the port 502, thus
ensuring the safety of data while in flight. The
AES-CBC mode with 256-bit key size was used
and the key was randomly generated and the IV
was hard coded because the key kept changing it
was okay for the IV to remain the same.

Another aspect to the AES encryption was the
padding the message before encryption, AES
works only on multiples of 16-bit data and so
if the request or response wasn't big enough it
needed to be padded to increase the size to 16 bits
so that it could be encrypted using AES(Advanced
Encryption Scheme). For this the PCKS5 packing
scheme was used, it basically finds a value to use
for padding based on the difference to the nearest
16th multiple and request/ response length. Using
this scheme the messages were padded using
some special character which is different for
every message and because it was padded it could
be sent in for encryption using AES(Advanced
Encryption Scheme).

Thus even in the event that there is a Man in
the Middle Attack and the hacker intercepts the
packet, he doesn't understand the contents of the
packet and thus cannot figure out what is going
on. If he randomly changes the value of the packet
the decryption at the other end fails, thus ensuring
that there is nothing that the Man in the Middle
can do to disrupt the transmission of data whilst
it's in flight.

4.2 Diffie-Hellman	Key	Exchange

The Diffie-Hellman algorithm helps generate
cryptographic keys across a public channel [8].
It was used in order to make the AES-CBC mode
full proof and almost unbreakable from threats
like guessing of initialization vector and key. Thus
the key at the Server and the Client didn’t need
to be hardcoded. This communication between
Server and Client used a different port so that
there is no possibility of corruption of data during
transmission. Port 9015 which is not a reserved
port, was used for this purpose. A python package
pyDHE was used for this key exchange and the
code needed for the calling of this function was
integrated at the all necessary situations at both
client and server.

Thus after servicing a certain number of requests,
this is configurable and can be set according to
the usage and how much delay can be levied.
The client and server first generate their own
public and private keys. They then exchange their
respective public keys to be able to generate a
shared key which is generated using a previously
agreed prime number a primitive root and the
other side's public key. Thus using the shared
key as part of the AES (Advanced Encryption
Scheme)algorithm, it makes the hardening full
proof and can't be understood by a “Man in the
Middle”.

Server Pseudo-Code:
client-connected = false
While true
 Wait for client connection on port 502
 client-connected = true
 While client-connected {
 Generate key pair (public/private)
 Exchange public keys
 Generate shared session key
num-requests = 0
 While client-connected AND num-requests <
requests-per-session {
 While client session active {

The Journal of CPRI, Vol. 13, No. 3, September 2017 427

 process decrypted client request
 Send encrypted response to client
 increment num-requests
 }
 if connection terminated {
 // client terminated connection
 client-connected = false
 } else {
 break
 }
 } } }

Client Pseudo-Code:
server-connected = false
Set up socket and connect with server on port 502
server-connected = true
While server-connected {
 Generate key pair (public/private)
 Exchange public keys
 Generate shared session key
num-requests = 0
 While server-connected AND num-requests <
requests-per-session {
 While server session active {
 Generate and encrypt client request
 Decrypt server responses
 increment num-requests
 }
 if connection terminated {
 // client terminates connection
 server-connected = false
 } else {
 break
 }
 }
 }

4.3 Authentication Schemes

uModbus in itself has a low-level authentication
scheme on the basis of the slave ID of the client.
For making sure the authentication is more secure
the Challenge Handshake Authentication Protocol
(CHAP) was used because it's considered reliable

and fast means of authentication. Again for
this, the port 9015 was used so that there is no
corruption of actual data being communicated via
the Modbus protocol.

In the CHAP (Challenge Handshake Authentication
Protocol) one decides the kind of Challenge that
is sent be the server to authenticate the client and
in this regard, two different challenges and two
different authentication criteria were tried in this
regard.

In the first challenge the concept of “RSA-digital
signatures” was used, the server generates a
random number, calculates it's hash value using
SHA and sends the random sequence to the client.
When the client when it's being authenticated for
the first time, it shares a public key with the server.
The client uses a private key which is generated
and signs the hash generated using SHA of the
random number sequence. This is then sent to
the server and even if someone intercepts and
changes the packet, the hash value calculated
will change and the protocol will fail. This was
implemented using the pyCrypto module which
has the libraries for RSA-digital signatures as well
as SHA, therefore both signing and calculation of
hash were done using the module.

Pseudo Code of RSA-Signature Scheme – Server
Side
if (num_reqests_serviced>authentication_
interval) {
Public_key = Receives public key from client
challenge = Generates random number as
challenge
 Sends the challenge to the client
hash_value_server = SHA (challenge)
 Receives response client
hash_vlaue_client = Decrypt (Response from
server, Public_key)
 if (hash_value_server == hash_value_client){
Client is verified and the next request is accepted
 }
 else {
 Terminate connection with client
 }

428 The Journal of CPRI, Vol. 13, No. 3, September 2017

}
Pseudo Code of RSA-Signature Scheme – Client
Side
if (num_reqests_serviced>authentication_
interval) {
 Generate key pair (Public and Private)
 Send the Public Key to Server
 challenge = Recieves random number as
challenge
hash_value_client = SHA (challenge)
 response = RSA (hash_value_client, Private_
key)
 Send encrypted response to server
 if (verified){
 Client can continue to generate new requests
 }
 else {
 Client’s connection is terminated and can’t
continue to generate new requests
 }
}

The second challenge was a novel approach
devised thinking of knowledge that would exist
at only the server and at authentic clients. It
basically involves authenticating the client based
on the previous history of requests that have
been serviced. The server and client store all
the requests that are being/ going to be serviced.
To authenticate the client, the server generates
a random number between 0 and the number of
requests that have been serviced up to that point
in time, this is then encrypted using AES and sent
over to the client with a different initialization
vector but the same key which was generated using
the Diffie-Hellman key exchange. The client then
decrypts the request using the same initialization
vector and the key. Then the request is taken and
it's encrypted and sent over to the server again
using the same initialization vector and key. The
server decrypts the encrypted request and verifies
it against the list of requests that it has serviced.
Thus the client is authenticated. The question
then arises as to how to authenticate a first time
client. The solution to this is pretty simple; the
arrays which store the serviced requests are pre-
initialized with some random value. The first

time authentication is done using a pre-initialized
value because only authentic clients will know
this response when asked for the first-time
authentication.

Pseudo Code of Previous history of serviced
requests
Signature Scheme – Server Side
if (num_reqests_serviced>authentication_
interval) {
 // number_of_requests_serviced array keeps
getting updated every time a request is serviced
// Session key from Diffie-Hellman is used
 challenge= Random(0,Length(number_
of_requests_serviced -1))
encrypted_request = AES_Encrypt (challenge,
session key)
 Sends the challenge to the client
resp = Receives response client
client_resp = AES_Decrypt (resp,session key)
 if (client_resp == number_of_requests_serviced
[challenge]){
 Client is verified and the next request is
accepted
 }
 else {
 Terminate connection with client
 }
}
Pseudo Code of Previous history of serviced
requests
Signature Scheme – Client Side
// number_of_requests_generated array keeps
getting updated every time a request is serviced
if (num_reqests_serviced>authentication_
interval) {
 challenge = Receive challenge from server
challenge_index = AES_Decrypt(challenge)
 response = number_of_requests_
generated[challenge_index]
encrypted_response = AES_Encrypt (response)
 Send encrypted_response to server
 if (verified){
Client can continue to generate new requests

The Journal of CPRI, Vol. 13, No. 3, September 2017 429

TABLE 1
MODBUS DELAY THEORETICAL PERFORMANCE EVALUATION

Operations/
Modbus

Functions/
Value being

written

Request/
Response

packet size

Number
of

Coils/Reg
isters
being

accessed

Delay
without
Hardeni
ng (ms)

Delay with
Hardening
-Only AES
w/o Diffie

(ms)

Delay with
Hardening
- Only AES
with Diffie

(ms)

Delay
because of
Diffie Key
Exchange

(ms)

Delay using
CHAP-1 (ms)

with AES [
RSA Digital
Signatures]

Delay using
CHAP-2 (ms)

with AES
(Challenged with
prev responses]

Delay using
CHAP-2 (ms)

with AES
♦Diffie Delay

Delay using
CHAP - 1
(ms) with

AES +Diffie
Delay

Read Coils
12/ 16 50 0.2430 0.2974 0.7243 0.4269 36.6863 0.3661 0.7930 37.1132
12/22 100 0.4054 0.4886 0.8756 0.3871 37.8271 0.5279 0.9150 38.2141
12/28 150 0.6571 0.7032 1.1308 0.4276 37.3587 0.7380 1.1656 37.7883
12/34 200 0.8735 0.9449 1.5885 0.6436 37.7688 1.4418 2.0853 38.4124

Read Holding
Registers

12/49 20 0.1341 0.2501 0.6062 0.3561 39.4592 0.2728 0.6289 39.8153
12/ 109 50 0.2002 0.2848 0.7320 0.4472 37.2518 0.3375 0.7847 37.6990
12/ 159 75 0.2734 0.3277 0.8057 0.4781 37.4217 0.4042 0.8823 37.8998
12/209 100 0.3593 0.4017 0.8717 0.4700 37.7473 0.4840 0.9540 38.2173

Write Single
Coil

0 12/12 1 0.0913 0.1453 0.5270 0.3817 37.5449 0.2038 0.5855 37.9266
1 12/ 12 1 0.0955 0.1401 0.5327 0.3926 38.4735 0.2197 0.6123 38.8861

Write Single
Register

50 12/ 12 1 0.1005 0.1464 0.5227 0.3763 37.5372 0.2075 0.5838 37.9134
100 12/12 1 0.0965 0.1432 0.5354 0.3922 37.1873 0.2185 0.6107 37.5794
500 12/12 1 0.0965 0.1409 0.5803 0.4394 36.5825 0.2193 0.6586 37.0218

1000 12/ 12 1 0.0945 0.1419 0.5512 0.4093 37.7341 0.2161 0.6254 38.1434
2000 12/ 12 1 0.0997 0.1421 0.5876 0.4456 37.4849 0.2168 0.6624 37.9304

10000 12/ 12 1 0.1046 0.1391 0.5707 0.4316 37.7697 0.2211 0.6527 38.2013

Writing 10000
multiple
registers

53/12 20 0.1750 0.2219 0.6346 0.4127 36.8150 0.2924 0.7050 37.2277

113/ 12 50 0.2868 0.4062 0.7728 0.3666 37.6507 0.4190 0.7856 38.0173
163/12 75 0.3997 0.5058 0.8717 0.3659 37.2369 0.5290 0.8950 37.6028
213/12 100 0.5069 0.6248 1.0254 0.4005 36.7746 0.6662 1.0667 37.1752

5.0 RESULTS

5.1	 Setup for Calculation of Delay

The optimized code was written with only
necessary features so that the delay which was
being added because of hardening could be
calculated. This was done by getting rid of all
the print statements and also changed the value of
prime used in the Diffie-Hellman key exchange
to a 16 digit prime number (1111235916285193)

because e ̂ (prime) was a cost intensive operation
and was taking a lot of time. After trying a few
combinations it was found to be reasonably
complex and also fast to compute, so the 16 digit
prime was used everywhere. The server code was
written such that it did not have any pre-initialized
values or prints. For the client, individual scripts
were written for each of the Modbus functions
and each of the hardening scenarios, so that the
delays for each function could be computed
individually. For the evaluation, these functions

 } else {
Client’s connection is terminated and can’t

continue to generate new requests
 } }

430 The Journal of CPRI, Vol. 13, No. 3, September 2017

were performed over 1000 iterations, measured
the time taken every time and then went ahead
and averaged it. For each stage, the delay was
calculated showing us how much time delay each
segment of the hardening was adding.

5.2 Graphs and Analysis from results

Using the optimized server and wrote specific
codes to evaluate performance of the hardened
Modbus protocol for each function of Modbus
and also for each and every hardening scenario
– Only AES, AES + Diffie, Diffie, AES + CHAP
etc.

Notes :

1. Only the read coils command graph has been
plotted because the trend across all other
graphs is similar as well, as can be seen in
the values mentioned in the table.

2. In the first graph the AES_CHAP_With_
RSA signatures has been divided by 14, so
that the other values can be comparable on
the graph.

Although the delays associated with all functions
were computed from the table it can be observed
that the trend of delay associated with all the parts
of hardening is showing a similar trend. Thus one
set of function codes has been graphed to divulge
necessary information using a graphical approach.
From this, a few points can be observed -

From the table it can be seen that CHAP
authentication using the previous request history
is much faster than the traditional CHAP using
the RSA signature scheme. It’s more than 14
times faster than the CHAP using the RSA-
digital signature scheme which can be seen from
the first graph. Thus it’s a better fit in situations
where the time constraints are in the order of
nanoseconds. When the time constraint is in the
order of a few seconds, the RSA digital signature
approach can be used. Also, it can be seen from
the second graphthat the delay keeps increasing
as more elements or security layers are added to
the hardening. Each layer adds its

FIG 2: GRAPHS OF READ COILS PERFORMANCE

own delay and adds to the total delay associated
with the hardened protocol; this can be seen
from the graph as the delay keeps on increasing
with each new layer of hardening added to the
protocol. Also it can be observed that after the
request/ response bits goes above 12/28 the time
taken increases and shape of the graph changes,

The Journal of CPRI, Vol. 13, No. 3, September 2017 431

this might be system related eccentricities and
further experimentation is required in a host of
different testing scenarios to be able to explain
the reason for the graph taking such a shape.
It can also be seen that the Diffie-Hellman key
exchange is adding a significant delay as compare
to the simple AES encryption scheme and so for
each application an acceptable frequency of key
exchange needs to be determined which at the
same time not compromise on the security of the
algorithm.

6.0 CONCLUSION

The objective of the project was to be able to
harden and increase reliability and security of
the Modbus protocol. This was achieved by
using already existing cryptography schemes
and techniques to device a new and more secure
approach to transmission via the Modbus protocol
building on pre-existing knowledge of the protocol
and adhering to the protocol requirements. The
results at each stage of hardening have been
tabulated; therefore people who are looking to
add security layers to their transmission can do
so by looking at the paper and using the level of
hardening which suits them the best.

As expected it was seen that on adding multiple
layers to the hardening of the protocol the
delay associated with the hardening went
up correspondingly. But also that the CHAP
(Challenge Handshake Authentication Protocol)
authentication scheme using the previous history
of serviced requests was way faster than the
RSA-digital signature authentication scheme.
Another added benefit of the hardened simulator
is the nature of ability to configure the number
of times the key exchange and authentication
happen between cycles by simply changing the
JSON configurations.

REFERENCES

[1] Modbus, Modbus application protocol
specification V1.1b3,

[2] Aamir Shahzad, Malrey Lee, Young-Keun
Lee Suntae Kim, Naixue Xiong Jae Young

Choi and Younghwa Cho, “Real Time
Modbus Transmissions and Cryptography
Security Designs and Enhancements
of Protocol Sensitive Information” in
Symmetry Open Access Journal, 2015.

[3] Igor Nai Fovino, Andrea Carcano, Marcelo
Masera and Alberto Trombetta, “design
and implementation of a secure modbus
protocol” in ICCIP: Critical Infrastructure
Protection, pp. 83-96, 2009.

[4] Gabor jakaboczki, eva adamko,
“vulnerabilities of modbus rtu protocol – a
case study” in annals of the oradea university
fascicle of management and technological
engineering issue #1, May 2015.

[5] Zakarya drias, Ahmed serhrouchni and
Olivier vogel, “Taxonomy of attacks
on Industrial Control protocols” in
Conference on Protocol Engineering
(ICPE) and International Conference on
New Technologies of Distributed Systems
(NTDS), IEEE, 2015.

[6] The Modbus Organization. Modbus
Messaging on TCP/IP Implementation
Guide V1.0a; Modbus Organization:
Hopkinton, MA, USA, pp. 2–15, 2004.

[7] Nikita Arora, Yogita Gigras, Block and
Stream Cipher Based Cryptographic
Algorithms: A Survey in International
Journal of Information and Computation
Technology. ISSN 0974-2239 Vol. 4, No. 2,
pp. 189-196, 2014.

[8] Stallings, William. Cryptography and
Network Security Principles and Practice.
Boston: Pearson, 2011.

[9] Abhiram Amaraneni, Mahendra Lagineni,
Rajesh Kalluri, Senthil kumar R.K, Ganga
Prasad G.L “Transient analysis of cyber-
attacks on Power SCADA using RTDS”
the Journal of CPRI, Vol. 11, No. 1, March
2015

[10] Samanth P, R Kalluri, RK Senthil Kumar, BS
Bindhumadhava. ‘SCADA communication
protocols: vulnerabilities, attacks and
possible mitigations’ at CSI Transactions on
ICT ISSN 2277-9078 during April 2013

432 The Journal of CPRI, Vol. 13, No. 3, September 2017

