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  Diagnosis of Inter-turn Fault in the Transformer Winding Using Wavelet
Based AI Approaches

R Rajeswari* and Dr N Kamaraj**

In this paper, Wavelet based ANFIS for finding the inter-turn fault of a transformer is proposed.
The detector uniquely responds to the winding inter-turn fault with remarkably high
sensitivity. Discrimination of different percentages of winding affected by inter-turn fault is
provided via ANFIS having an eight dimensional input vector. This input vector is obtained
from features extracted from DWT of inter-turn faulty current, leaving the transformer
phase winding. Training data for ANFIS are generated via a simulation of transformer with
inter-turn fault using MATLAB. The proposed algorithm using ANFIS gives more satisfactory
performance than ANN and GABPN with selected statistical data of decomposed levels of
faulty current.
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1.0 INTRODUCTION

At present, transformers are protected against
almost all kinds of faults using differential
methods of protection. All kinds of faults
develop into inter-winding fault by damaging
the inter-winding insulation. So it is necessary
to protect the transformer from inter-winding
faults. For inter-winding protection, differential
method cannot be implemented as the current
on both sides of the fault will be the same.
In this paper, the wavelet based ANFIS method
for identifying the percentage of winding under
fault is used. The faulty data are collected
by simulating the fault by means of connecting
a resistor in parallel with the winding. Faulty
current data are given to the DWT Tool and
features are extracted, normalised and used as
input for ANN. Using this approach ANFIS
Transformer can be protected within 0.01
seconds from the occurrence of the fault
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which will ensure maximum protection of the
winding.

Secondary winding faults of transformers are
considered serious problems because of the
damage associated with high fault currents and
the high cost of maintenance. A high speed bias
differential relay is normally used to detect three
phases, phase-phase and double phase to ground
faults. In case of inter-turn winding fault, the
current on both sides of the winding is the same.
Due to this factor we cannot adapt the
differential scheme of protection for inter-turn
winding fault.

When there is an insulation failure in between
the winding inter-turns, they get short circuited
and the amount of winding involved in
transformation gets reduced. As the amount of
winding under transferring action is reduced,
the amount of current in the secondary gets
increased. When this problem is left undealt
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with, the inter-winding insulation gets affected
there by further reducing the amount of winding
involved in transformation. This fault will
completely damage the winding at the extreme
stage. The cost of winding is very high when
compared to the protection methods which can
adapt. The aim of the proposed method is to
protect the system within a very short period in
the range of microseconds.

2.0 WAVELET TRANSFORM

Wavelet transform was introduced at the
beginning of the 1980s and has attracted much
interest in the fields of speech and image
processing since then. Its potential applications
to power industry have been discussed recently
by [1], [2], [3], [4], [5] and [6].

In this approach, any function f(t) can be
expanded in terms of a class of orthogonal basis
functions. In wavelet applications, different basis
functions have been proposed and selected. Each
basis function has its feasibility depending on
the application requirements. In the proposed
scheme, dmey wavelet was selected to serve as
a wavelet basis function for extracting features
from faulty currents. Fig. 1 shows the tree
algorithm of a multiresolution WT for a signal.

The outputs of the LP filters are called the
approximations (A), and the outputs of the HP
filters are called the details (D). There are two
fundamental equations upon which wavelet
calculations are based; the scaling function:
Φ (t)(1); and the wavelet function: Ψ(t)(2).
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These functions are two-scale difference
equations based on a chosen scaling function
Φ, with properties that satisfy certain admission
criteria. The discrete sequences h

k
 and g

k

represent discrete filters that solve each
equation. The scaling and wavelet functions are
the prototypes of a class of orthonormal basis
functions of the form:
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Where the parameter j controls the dilation or
compression of the function in time scale and
amplitude, the parameter k controls the
translation of the function in time, and z is a set
of integers.

Once a wavelet system is created, it can be used
to expand a function f(t) in terms of the basis
functions(5):

( ) ∑=tf

(5)

Where the coefficients c(l) and d(j, k) are
calculated by inner product as (6) and (7):
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The expansion coefficient c(l) represents
the approximation of the original signal f(t)
with a resolution of one point per every 2J

points of the original signal. The expansion
coefficients d (j, k) represent details of the
original signal at different levels of resolution.
c (l) and d (j, k) terms can be calculated by
direct convolution of f(t) samples with the
coefficients h

k
 and g

k
.

3.0 BASIC THEORY OF ANFIS

Adaptive Neural Fuzzy Inference System
(ANFIS) is a product of combining the fuzzy
inference system with neural network. The fuzzy
inference system is used widely to fuzzy control;
it can number rules by leading into a new ideal
of membership function to deal with structural
knowledge. Neural network usually does not
deal with structure knowledge, but it has the
function of self-adapting and self-learning.
By learning a lot of data, it can estimate
the relations between the data of input and
output, and has strong inundate functions.
ANFIS  fully makes use of the excellent
characteristics of the neural network and fuzzy
inference system and is widely applied in fuzzy
control and model discerning fields. As a special
neural network, ANFIS can approach all non-
linear systems with less training data and quicker
weakening speed and higher precision. ANFIS
is a neural network in fact, which realises
Sugeno system using network. Thinking of a
system with N input and 1 output, each input is
divided into M fuzzy sets, fuzzy of Sugeno
model is as following:

If, x
1
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The structure of ANFIS (N=2, M=3) is shown
in Fig. 2, and the junction spot of the
same layer has the same kind of output
function.

The detail of the whole network is as follows:

The first layer: The output function of each
junction spot is as follows:
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and is language fuzzy sets, and O (l)
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membership function of  x

k
, where membership

function includes some parameter. Taking an
example, bell form function as follows:
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Its form depends on three parameters {a
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The second layer: The layer has MN junction
spot, and the output of each junction spot is the
product of all inputs multiplied, but the
multiplication may be instead of all kinds of T-
model plan egg. The output of this layer is as
follows:
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The third layer: This layer has the same junction
spots as the second layer. The output of this
layer is as follows:
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FIG. 2 STRUCTURE OF ANFIS (N=2, M=3)
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The fourth layer: The layer has the same junction
spots as the third layer, and each junction spot
has auto-adapting function. The output of this
layer is as follows:
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Where p 
i1i2…iN

 (k) and q
i1i2…iN’ 

 are adjustable
parameters.

The fifth layer: This layer has only one junction
spot. The output of this layer is as follows:

Y= O (5) = 
i1i2…iN =1 

M
 
O (4)
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ANFIS is a special neural network, if input
variables are divided into enough fuzzy sets,
the network can accurately approach all
kinds of non-linear functions by adjusting
parameters of the membership function in the
first layer and adjusting the output function
parameter p 

i1i2…iN
 (k) and q

i1i2…iN’
 in the fourth

layer (4) (5).

4.0 BASIC THEORY OF GABPN

Genetic Algorithm is used for finding weights
of Artificial Neural Network which reduces
the training time of the neural network. Fitness
function computation for BPN using GA is
shown in Fig. 3.

The algorithm for finding weights of ANN is
divided into two sections. The first part is to
compute the fitness function and the second part
is to generate weights of ANN using back
propagation algorithm.

ALGORITHM FOR GABPN

{

i = 0;

Generate the initial population Pi of real-coded
chromosomes Cji each representing a weight set
for the BPN;

While the current population Pi has not
converged

{

Generate fitness values Fji for each Cji ∈ Pi
using the algorithm FITGEN ();

Get the mating pool ready by terminating worst
fit individuals and duplicating high

Fit individuals;

Using the crossover mechanism, reproduce
offspring from the parents

Chromosomes;

i++;

Call the current population Pi

Calculate fitness values Fji for each Cji ∈ Pi;

  }

Extract weights from Pi to be used by the BPN;

}

ALGORITHM FOR FITGEN

{

Let (Ii, Ti), i = 1, 2, …, N where Ii=(I
1i
, I

2i
, …,

I
li
) and Ti = (T

1i
, T

2i
, …, T

ni
) represent the input-

output pairs of the problem to be solved by BPN
with a configuration l-m-n.

For each chromosome Ci, i = 1, 2, ..., p
belonging to the current population Pi whose
size is p

{

Extract weights Wi from Ci with the help of
equation (8) and (9).
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2

2 +∗+= +
−
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d
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FIG. 3 FITNESS FUNCTION COMPUTATION FOR BPN USING
GA
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Keeping Wi as fixed weight setting, train the
BPN for the N input instances;

Calculate error Ei for each of the input instances
using formula (10),

(∑ −= jijii OTjE (10)

Where, O
ji
 is the output vector calculated by

BPN;

Find the root mean square E of the errors Ei,
i = 1, 2… N

i.e., 
⎠

⎞
⎜
⎝

⎛ ÷= ∑
i

ii NEE (11)

Calculate the fitness value F
i
 for each of the

individual string of the population as

EFi /1=   ; (12)

}

Output F
i
 for each Ci, i=1,2…….pi

}

5.0 PROPOSED ALGORITHM

The algorithm depends on utilising WT for
its powerful analysing and decomposing
features. David C Robertson et al, Fernando
H et al have discussed the use of wavelets for
signal transients. For four decomposition levels
of the phase current, maximum range values are
taken as featured input vector under faulty
condition. Extracted features may be anything
like maximum, mean, minimum, absolute mean
deviation, etc. Output vector of ANN, GABPN
and ANFIS reveals the percentage of winding
affected by fault. If the disturbance is classified
as a fault on the winding, the circuit breaker of

the transformer will be tripped. In this proposed
scheme, with Ia fault current data taken with
different percentage of winding short circuit,
fault current data is considered for 0.25 cycles
from the instant of fault. The structure for ANN
is taken as 8-5-1 for the model system. The
architecture of ANN used for this application is
shown in Fig. 4.

If the system is considered with more statistical
data, the structure will take a different number
of neurons in three layers. In the sample
system one hidden layer is selected with four
neurons. By trial and error, this number
is selected optimally. Training Data for ANN,
GABPN and ANFIS are encoded as follows:

Ia phase current of the transformer is measured
through Current Transformer. This signal is
sampled at a sampling frequency of 2 KHz. The
algorithm starts by collecting ¼ cycle sampled
data window of the signal. Based on a sampling
frequency of 2 KHz, one cycle contains 40
samples (frequency of operation is 50 Hz). So
with sample count of 10, after finishing quarter
cycle of current signal, values are recorded for
this ¼ cycle. This quarter cycle data have to be
checked for lying in I, II, III, IV quadrants of
the current signal. For healthy current signal,
Fig. 5 shows these quadrants.

Ia Ia Ia Ia Ia Ia Ia Ia Output
Level Level Level Level Level Level Level Level (% wdg
I- I- II- II- III- III- IV- IV- of
Max Range Max Range Max Range Max Range Fault)

FIG. 4 ARCHITECTURE OF ANN
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This checking will be possible by just comparing
two successive samples. If difference between two
samples is positive, positively rising i.e., lying in
I quadrant. If difference is negative, negatively
falling i.e. lying in II quadrant. Similarly for
negative half cycle. After determining the quadrant
of current signal, DWT is applied to extract
statistical data for its 4 decomposition levels. For
this algorithm, any of the statistical data for current
signal can be taken as all give satisfactory
results. Results are given for simulated statistical
data of maximum range of level 1, 2, 3 and level
4 of faulty signal. After extracting statistical
features, data is encoded as per the format shown
above. Then it is given to the corresponding ANFIS
which are trained for I, II, III and IV quadrants of
faulty currents respectively. ANFIS gives decision
about percentage of winding fault on the phase
winding of the transformer. The same procedure
can be adapted for other phase windings of the
transformer for giving complete protection to the
transformer. So the 3 phase transformer can be
protected from faulty condition by classifying the
percentage of winding fault. No fault case is also
taken into account for training the ANFIS, GABPN
and ANN. The flowchart of this scheme is shown
in Fig. 6.

6.0 SIMULATION RESULTS

The sample network consists of one generator
connected to 3 phase RL load through
two transformers and one transmission line.
The model network has been simulated
using MATLAB and is shown in Fig. 7.
Rating of the generator is 1000MVA, 11KV,
50Hz.

Training data for the ANN, GABPN and
ANFIS are prepared by simulating various %

FIG. 5 HEALTHY CURRENT SIGNAL SHOWING FOUR
QUADRANTS

TABLE 1

MEANING OF OUTPUT VECTOR OF
ANN, GABPN AND ANFIS

Output % of winding affected by the
short circuit

0.1 1%

0.2 2%

0.3 3%

0.4 4%

0.5 …. 5% ….

1 100%

FIG. 6 FLOWCHART OF PROPOSED ALGORITHM

FIG. 7 TRANSFORMER WITH FAULT SIMULATING
RESISTOR
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of winding short circuit faults on the phase
winding. The inter-turn fault is generated by
connecting a resistor across the winding
which will reduce the resultant value of both
resistance and reactance of the phase winding.
The above will be the actual case of the fault
and simulated just by connecting a resistor
across the winding [7]. A variable resistor
is connected across the secondary winding
A. The percentage of the winding fault can
be changed by varying the value of the resistor.

To increase the reliability of the system, the
protection system should be trained for all
the four quarter cycles of faulty current.
The phase current of one winding is passed
through sampling circuit. These sampled
signals perform as the input to the DWT based
fault diagnosis algorithm. The described DWT-
ANFIS algorithm is applied and tested on the
sample transformer. The fault current at phase
A for 20% winding short circuit is shown in
Fig. 8.

This current is then loaded to the Wavelet Tool
of MATLAB and analysed with dmey wavelet
with four level decomposition. Statistics
are recorded for each level of decomposition.
Extracted features are statistical details of
maximum range for four levels of phase current.
They are arranged to form input vector for
ANN, GABPN and ANFIS for different %
of winding short circuit fault.  The four

decomposed levels of faulty current with their
statistical data are shown in Figs. 9A, 9B, 9C
and 9D.

FIG. 8 FAULT CURRENT FROM PHASE A OF
TRANSFORMER PRIMARY

FIG. 9A DECOMPOSED LEVELS OF FAULTY CURRENT

FIG. 9B DECOMPOSED LEVELS OF FAULTY CURRENT

FIG. 9C DECOMPOSED LEVELS OF FAULTY CURRENT
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With the proposed procedure, a sample system having
two transformers has been tested which gives 100%
performance with only two features of maximum
and range of four levels of one phase current.
Therefore input vector will have eight components.
Similar procedure can be followed for other phase
currents of the transformer. So CB will be operated
according to the decision made by ANFIS. With
ANN, GABPN and ANFIS, the system is tested with
many data for the sample system. For normalised
four original testing data formulated as per the data
format shown above, average testing errors for ANN,
GABPN and ANFIS are given in Table 4.

Inference made from output of the network
is also given in the Table.

FIG. 9D DECOMPOSED LEVELS OF FAULTY CURRENT

TABLE 2

SIMULATED SAMPLE DATA FOR DIFFERENT % OF WINDING SHORT CIRCUIT
FAULT OF MODEL SYSTEM

Data Level I Level II Level III Level IV Output

Number Max Range Max Range Max Range Max Range % of fault

1 3.175 6.412 6.905 11.1 14.2 34.78 17.69 28.34 11

2 2.875 5.559 3.636 9.914 20.21 39.55 34.01 37.46 12

3 2.604 5.407 7.241 13.87 17.7 37.09 23.51 40.41 13

4 1.969 5.069 5.844 12.03 20.01 39.48 29.99 51.1 14

5 3.466 6.294 8.396 15.04 19.68 39.4 40.26 62.11 15

6 2.481 4.757 8.606 15.4 12.93 32.8 51.96 78.24 16

7 2.543 4.442 3.936 11.53 8.739 28.53 64.24 91.88 17

8 2.026 4.495 4.923 12.03 13.32 33.71 71.35 100.8 18

9 3.426 5.695 3.169 10.32 10.29 31.56 75.75 118.4 19

10 1.343 2.842 4.188 10.32 9.142 17.37 32.89 59.21 20

TABLE 3

NORMALISED SIMULATED TRAINING SAMPLE DATA FOR DIFFERENT % OF
WINDING SHORT CIRCUIT FAULT OF MODEL SYSTEM

Data Level I Level II Level III Level IV Output

Number Max Range Max Range Max Range Max Range % of fault

1 0.3913 0.4338 0.2302 0.1854 0.111 0.1517 0.0458 0.0369 0.11

2 0.3543 0.3761 0.1212 0.1656 0.158 0.1726 0.088 0.0487 0.12

3 0.3209 0.3658 0.2414 0.2316 0.1384 0.1618 0.0608 0.0526 0.13

4 0.2426 0.343 0.1948 0.2009 0.1565 0.1723 0.0776 0.0665 0.14

5 0.4271 0.4258 0.2799 0.2512 0.1539 0.1719 0.1041 0.0808 0.15

6 0.3057 0.3219 0.2869 0.2572 0.1011 0.1431 0.1344 0.1018 0.16

7 0.3134 0.3005 0.1312 0.1926 0.0683 0.1245 0.1662 0.1196 0.17

8 0.2497 0.3041 0.1641 0.2009 0.1041 0.1471 0.1846 0.1312 0.18

9 0.4222 0.3853 0.1056 0.1723 0.0805 0.1377 0.1959 0.1541 0.19

10 0.1655 0.1923 0.1396 0.1723 0.0715 0.0758 0.0851 0.077 0.2
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Total simulated data are hundred in number. But
ten sample data are given in Table 2
(Unnormalised). Table 3 shows corresponding
normalised data.

ANFIS Structure used for this scheme is shown
in Fig. 10. The ANFIS information is:

Number of nodes : 155

Number of linear parameters : 72

Number of non-linear parameters : 128

Total number of parameters : 200

Number of training data pairs : 99

Number of checking data pairs : 0

Number of fuzzy rules : 8

ANFIS used for this purpose uses the hybrid
method as its optimisation method. The
error tolerance is taken as zero. The number of
epochs for training the ANFIS is 300. Testing
of ANFIS is performed for the following
percentage of winding inter-turn faults of the
transformer: 3%, 35%, 25% and 60%.

Fig. 11 shows the training error for 300 epochs
after training of ANFIS.

The ANN used for this application is feed forward
propagation network. Network was trained for the
training data for 300 epochs. For the neural
network, weights are determined using Genetic
Algorithm. ANN is again tested with same testing
data, giving satisfactory results. Comparison is
made among these three systems. From the results,
the proposed wavelet based ANFIS gives better
performance than ANN and GABPN. Table 4
shows the average testing error of ANN, GABPN
and ANFIS for various percentages of winding
faults. Fig. 12 shows the ANN used for this
purpose. Fig. 13 shows the performance curve of
ANN after training the network.

FIG. 10 STRUCTURE OF ANFIS

FIG. 12 STRUCTURE OF ANN

FIG. 13 PERFORMANCE (MSE) CURVE OF ANN AFTER
TRAINING

TABLE 4

PERFORMANCE COMPARISONS
BETWEEN ANN, GABPN AND ANFIS

Percentage of Average Testing Error

Winding Fault ANN GABPN ANFIS

35 0.01021 0.010413 0.0002577

3 0.05437 0.030011 0.0183202

25 0.01468 0.027607 0.0046316

60 0.00199 0.048634 0.0028127

FIG. 11 ERROR Vs EPOCHS

Epoch 300: Error = 0.003498
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From Table 4, it is concluded that ANFIS gives
better performance than ANN and GABPN.

7.0 CONCLUSION

A new scheme for diagnosing inter-turn fault of
the transformer is presented in this paper. The
scheme depends on measuring three phase
currents of the transformer. The DWT with its
magnificent characteristics is employed to detect
the disturbances in the current signals. The
proposed algorithm has been applied for the
sample system. This algorithm works with an
efficiency of 100% if limited no. of statistical
data of decomposition levels of faulty current
are considered for making input vector.
Limitation for selecting statistical data by trial
and error is four. In the sample system, only
two data are selected for forming input vector.
All faults at different loading can be identified
in less than half cycle time after the fault
inception. For training ANN, GABPN and
ANFIS, no fault case is considered with loading.
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