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the conventional Supervisory Control and Data 
Acquisition (SCADA) system, and is capable 
of providing synchronized voltage and current 
phasor measurements. These phasors are 
generated at PMU located in the fi eld utilizing 
Global Positioning System (GPS) for the time 
synchronization. 

With the availability of voltage and current phasors 
at a faster rate, accurate and fast techniques for 
the fault diagnosis can be evolved. However, 
PMU placement on each bus of the transmission 
system is not practically feasible due to cost 
factor. Hence a suitable methodology is needed 
to determine the optimal locations of PMUs for 
making system observable for fault location view 
point in a transmission network. Since, a rigorous 
formulation of the optimal placement becomes 

1.0 INTRODUCTION

A power system network is subjected to the various 
types of faults resulting in excessive current fl ow 
in the network and, sometimes, this leads to 
instability of the system. Thus, an accurate fault 
diagnosis technique is important in improving the 
power system security and reliability. The overall 
fault diagnosis problem involves: fault detection 
whether fault has taken place, fault classifi cation 
to fi nd out whether the fault is 3-phase, line-to-
line, single line-to-ground, double line-to-ground 
fault, faulted line identifi cation and fault location 
estimation. Recently, synchrophasor based Wide 
Area Monitoring and Control Systems (WAMCS) 
are increasingly being deployed in the power 
utility networks to enhance real time monitoring 
and control of the system. This supplements 
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very diffi cult and it is time consuming to search 
for the global optimal solution, a systematic 
procedure which presents nearly optimal solution 
is usually desired to develop the PMUs placement 
strategy.

In [12], the OPP has been carried out using 
ILP, which ensures the bus observability of the 
complete system. An exhaustive search based 
approach has been proposed in [4] to determine 
the minimum number and optimal placement of 
PMUs for state estimation, considering single 
branch outages. The ILP based PMU placement 
ensuring numerical observability and the 
numerical observability involves calculation of 
measurement Jacobian which refl ects system 
confi guration and measurement set has been 
proposed in [6]. In [13], the PMUs placement 
based on topological observability has been 
proposed out using simulated annealing. Multi-
staging of PMUs placement using integer linear 
programming has been carried out in [7]. The 
optimal PMUs placement has been done using 
spanning trees of a power system for complete 
system observability and the optimal number 
has been reduced as compared to complete 
observability by using depth of unobservabiltiy 
in [9].

A linear programming based approach has 
been proposed in [10] that maintains system 
observability under intact and single network 
outage. The recent developments in the PMU 
based wide area protection and its key role has 
been comprehensively surveyed in [11]. The 
present and possible future applications such as 
state estimation, stability studies and wide area 
protection, etc. of the phasor measurement units 
have been well documented in [14,15,2]. The 
PMUs placement based on heuristic approach to 
make system fault location observable has been 
carried out and the travelling wave theory has 
been used for fi nding the fault location in [5]. 
A new adaptive fault location technique based on 
PMU for transmission line is presented in [16] 
where, voltage and current phasors are obtained 
through PMU placed on both ends of the line. 
A SVM based fault diagnosis is carried out in [8] 
where, 5 cycles of during fault phasor values of 

voltages and currents during fault given as input 
feature vector to the SVM are not time stamped. 

This paper proposes a topological based approach 
for the optimal PMUs placement to make the 
system completely observable for transmission 
network fault diagnosis. An ILP based PMU 
placement has been considered, making system 
complete line observable which can readily 
detect and locate the fault in a transmission line 
accurately. The impact of breaker and half busbars 
scheme on the proposed OPP method has also 
been investigated. A SVM based fault diagnosis 
approach is proposed using the synchrophasor 
measurements obtained from the optimally placed 
PMUs. The Synchrophasor data is collected from 
PMUs during fault condition and post fault one 
cycle each given as input feature to the SVM. 
The effectiveness of the proposed method is 
tested on WSCC-9 bus system with and without 
considering breaker and half scheme and on 
NE-39 bus system.

2.0 BREAKER AND HALF SCHEME: 
A REVIEW

The bus-bar schemes in transmission substations 
are generally confi gured in ring bus or more 
often breaker and half bus-bars scheme. In a 
breaker and half scheme, for every 2 circuits, 
there are 3 circuit breakers (B), thus, each circuit 
sharing a common breaker as shown in Figure 1. 
Any breaker can be removed for maintenance 
without affecting the service on the corresponding 
existing feeder transformer (T/f), and a fault on 
either bus can be isolated without interrupting 
service to the outgoing (O/G) lines. 

FIG. 1  BREAKER AND HALF BUSBARS SCHEME
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If a center breaker fails, this causes the loss of both 
the circuits, while the loss of an outside breaker 
disrupts the corresponding circuit only. This 
scheme has the highest fl exibility and reliability 
during the maintenance. The breaker and half 
scheme is a popular choice while upgrading a ring 
bus to provide more terminals. The advantages 
of this scheme are fl exible operation and high 
reliability, double feed to each circuit, isolation 
of either bus or any breaker for maintenance 
without service disruption. The disadvantages of 
this scheme are more complicated relaying as the 
central breaker has to act on faults for either of the 
2 circuits associated with it. The main purpose of 
consideration of breaker and half bus-bar scheme 
is to observe its impact on the placement of PMUs. 
The placement method proposed in this paper 
considers the breaker and half bus-bar scheme for 
one test system i.e., WSCC-9 bus system.

3.0 PROPOSED METHOD

The OPP problem is binary in nature, whose 
objective is minimization of installation cost. 
The constraint is that minimum one PMU at each 
end of the line making system fault observable. 
The PMU placement problem formulated using 
ILP is as follows:

min 
N

i i
i 1

C x
=
∑  (1)

Subject to

fj (X) ≥ 1 (2)

where xi is the vector whose entries are one if 
PMU is placed at ith bus and zero otherwise. Ci 
is the cost PMU installation at ith bus which is 
assumed 1 pu. fi is the observability constraint at   
jth line and the ILP can be illustrated with help 
of a 6 bus example shown in Figure 2.

      PMU 

FIG. 2  6 BUS EXAMPLE [3]

The constraints are as given in eq. (3). The fi rst 
constraint x1+x2≥1 makes the line 1–2 observable 
by placing minimum one PMU. The solution of 
the above ILP problem for the line observability, 
using Matlab 7.0, is {2, 4, and 6}. For bus 
observability [6], the PMUs will be placed at 
{2, 5} which will make lines 1–6, 3–4 
unobservable under fault occurrence, as the line 
parameters are going to change

1 1 2

2 2 3

3 3 4

4 4 5

5 5 2

6 5 6

7 6 2

: 1
: 1
: 1
: 1
: 1
: 1
: 1

+ ≥
+ ≥
+ ≥
+ ≥
+ ≥
+ ≥
+ ≥

f x x
f x x
f x x
f x x
f x x
f x x
f x x

 (3)

The observability of power system refers to 
unique determination of all its states. So, separate 
PMU placement is needed for the fault diagnosis. 
It is to be observed that the proposed OPP makes 
system completely line observable even under 
fault occurrences. Once the placement is done, 
a real power based (N-1) contingency analysis 
is carried out for fi nding the critical lines. The 
critical lines are the lines with high Performance 
Index (PI) obtained from the contingency ranking. 
The real power based performance index is as 
given below

l
2nN

m lm
max
lmm 1

w PPI
2n P=

⎛ ⎞
= ⎜ ⎟⎝ ⎠∑

where,Plm is the real power fl ow and max
lmP  is the 

rated capacity of the line-m, n is the exponent 
and Wm is the real non-negative coeffi cient 
which may be used to refl ect the importance of 
the lines. Nl is the total number of lines in the 
transmission network. The lines with high PI are 
considered to be more critical and various faults 
are posed on the lines and the data is collected 
from the PMUs and are given to the SVM which 
is done in two phases. 

In phase-I, three SVM-Classifi ers (SVM-C), are 
used for fault detection, faulted line identifi cation 
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and fault classifi cation. In phase-II, four support 
vector regressors are used, in which, two cycles 
of the time-stamped voltage and current phasors 
during fault and fault type information obtained 
from the phase-I are given as input feature vector 
for fi nding out fault distance from the PMU 
located bus. The phasor reporting rate considered 
for 60 Hz is 60 phasors per sec. The input vector 
for SVM consists of phasor voltages of the buses 
where PMUs are placed and phasor currents of 
fl owing through the lines emanating from the 
PMU bus. The block diagram for the phase-I is 
shown in Figure 3.

FIG. 3  BLOCK DIAGRAM FOR THE SVM 
CLASSIFICATION

The proposed OPP ensures complete observability 
of all the transmission lines of the system. The 
SVM-1 takes both pre-fault and during fault data 
of one cycle each, for detecting whether fault has 
taken place or not. For achieving good decision, 
pre-fault data is also taken into consideration. The 
output can be either 0, no fault condition or 1, 
fault condition. The SVM-2 and SVM-3 take one 
cycle of data at the fault instance for faulted line 
identifi cation and fault classifi cation. Dimension 
of the input pattern is given by total number of 
transmission lines in the system and voltages of 
the PMU buses.

Transmission lines are subjected to wide-variety 
of faults, which include Single Line-to-Ground 
(SLG), Double Line-to-Ground (DLG), Double 
line (LL) and Three-phase (LLL) faults. The 
training and test patterns are generated for above 
mentioned four types of faults with varying fault 
impedance values and at different locations of the 
transmission line. For locating the fault distance, 
four SVM regressors are used for fi nding fault 
distance from the PMU bus. The phase-II input 

features include the fault type information along 
with voltage and current phasors as shown in 
Figure 4.

FIG. 4 BLOCK DIAGRAM FOR THE SVM REGRESSION

4.0 SUPPORT VECTOR MACHINE AND 
RADIAL BASIS FUNCTION NEURAL 
NETWORKS

4.1 Support Vector Machine

Support vector machine [17,19] is an intelligent 
learning method for pattern recognition and and 
promising method for learning the separating 
functions used in the classifi cation tasks, or for 
performing function estimation in the regression 
analysis. The SVM uses supervised learning to 
classify data into two or more classes. SVMs 
were originated from the statistical learning 
theory proposed by Vapnik [1] for ‘distribution-
free learning from data’. The use of SVM is 
a remedy among other alternatives such as 
fuzzy logic, Neural Networks (NN) or Genetic 
Algorithms (GA), which generally suffers from 
the presence of multiple local minima, structure 
selection problem e.g. number of hidden layer 
nodes in NNs, population size in GAs and 
over-fi tting.

4.1.1 SVM-Classifi cation

A classifi cation task usually involves training 
and testing data, which consists of some data 
instances. Each instance in the training set 
contains one “target value” (class labels) and 
several “attributes” (features). The goal of SVM 
is to produce a model which predicts target value 
of the data instances in the testing phase when 
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only the attributes are given. The Support Vector 
(SV) methods construct the optimal separating 
hyperplane for pattern recognition. If the data 
set is linearly separable, the required number of 
SVs can be small. Consequently, the hyperplane 
is determined by a small subset of training data 
set. When there is no separating hyperplane, the 
goal of SVM is to maximize the margin.

Consider a training set of instance-label pairs
(xi, yi), i=1, ....., l where xi∈Rn  and yi∈{-1,1}l and 
l is the number of instances. The optimization 
criterion to obtain the (optimum) separating 
hyperplane [17] is taken as,

2
iw,b,

1

1min w C
2ξ

=

⎛ ⎞
+ ξ⎜ ⎟⎝ ⎠∑

l

i

 (4)

subject to

( ). 1 , 0+ ≥ − ≥ ∀i i i iy w x r iξ ξ  (5)

Its dual form can be written as

T T1min Q e
2α

α α −  (6)

subject to

 y
T α = 0, 0 ≤ α ≤C, i=1,... l (7)

where e is the vector of all ones, C > 0 is the upper 
bound, Qij ≡ yiyj K (xi, xj)  is a l × l positive semi-
defi nite matrix, and ( ) ( ) ( )T, =i j i jK x x x xφ φ  is the 
kernel. Here, the training vector xi is mapped into 
high dimensional space with bias by the function 
Φ. The decision function [15] is given by, 

( )
1

sgn ,
=

⎛ ⎞
+⎜ ⎟⎝ ⎠∑ i i i j

l

i
y K x x bα  (8)

SVMs are designed for binary classifi ers. 
Currently, there are two types of approaches for 
multi-class problems. One is constructing and 
combining several binary classifi ers, while the 
other is by considering all the data in a single 
optimization formulation. In the former approach, 
methods like ‘one-against-one’ and ‘one-against-

all’ have been proposed, where multi-class 
problem is solved by combining several binary 
classifi ers. In this work, ‘one-against-one’ method 
[18] is used for multi-class classifi cation, because 
of its less learning time over ‘one-against-all’. 
Often, in order to fi nd the suitable boundary 
between two classes, the SVM has to map the 
data from the input space to high dimensional 
space. The function that performs this mapping 
is called a ‘kernel function’. The choice of kernel 
function and its parameter settings are important 
elements in designing SVM. There are different 
types of kernels, to train the SVM, where Radial 
basis function (RBF) kernel is given by 

( )2
( , ) exp , 0= − − >i j i jK x x x xγ γ  (9)

The RBF kernel is used in this work. For training 
of the SVM for any classifi cation and regression 
problem, an approximate representation of 
examples as well as model parameters C,γ and 
K(xi,xj) 

selection play a key role in achieving the 
high performance of the machine learning. The 
penalty parameter Cis a regularization parameter 
that controls the tradeoff between maximizing 
the margin and minimizing the training error.

The kernel functionK (xi, xj) and 2
1⎛ ⎞

=⎜ ⎟⎝ ⎠
γ γ

σ
 

(σ  is the width of the kernel) implicitly defi nes 
the nonlinear mapping from input space to high 
dimensional feature space. It is found that larger  
C corresponds to less number of support vectors 
as well as higher testing accuracy although 
over-fi tting cannot be avoided. Training of the 
SVM requires selection of the parameter C and 
kernel parameters to obtain good performance. 
Interactive grid search is used to estimate the 
parameters.

4.1.2 SVM-regression

SVMs are originally developed to solve 
classifi cation problem However recently 
these have been extended to the regression 
problems [17]. The support vector regressor model 
depends only on a subset of training data, as the 
cost function for building the model ignores any 
training data close to model prediction (within 
a threshold ε ). Given a set of training samples, 
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one wants to learn a regression function as given 
below,

T Nf(x) = w x + b, w, x R and b R∈ ∈  (10)

The regression can be solved through an 
optimization problem presented in [15]. The 
regressor used here, is υ -SVR, with (C, ν) as 
parameters υ -SVR solves,

( )*

T *
, , , , 1

1 1min
2 =

⎛ ⎞
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⎝ ⎠

+ + −∑
l

i iw b i
w w C

lξ ξ ε
υε ξ ξ  (11)

subject to

( )( ) ,+ − ≤ +T
i i iw x b zφ ε ξ

*, 0, 1,...., , 0≥ = ≥i i i lξ ξ ε  (12)

It is proved in [18], ν is an upper bound on the 
fraction of training errors and a lower bound of 
the fraction of support vectors.

4.2 Radial Basis Neural Networks

Radial basis neural network is a feed forward 
neural network, which has good fi tting ability 
and fast training speed. The RBFNN used in this 
paper for comparison with SVM method, has an 
input layer, a hidden layer consisting of Gaussian 
node function, a set of weights w  connecting 
hidden layer and the output layer. Let x be the 
input vector x = (x1, x2,....,xD)T

 and output vector 
o = (o1, o2,.....oN) (where D is the number of 
nputs and N is the number of output nodes. For 
an input x (t) and p training patterns, RBFNN 
approximation at the jth output node is given by

( ) ( )

( )
1

2
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= +∑
=

− −

= +∑
=
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j ij

i
tot

i
ij

m
o t w t bii

x t c
m

w e b
i

φ

σ  (13)

where ci is the ith hidden node, σi is the width 
of the ith center and mtot is the total number 
of hidden nodes. Training of RBFNN involves 
selecting centers, estimating weights and bias  

b that connect hidden layer and output layer. 
The network begins with no hidden units and as 
observations are received, new hidden units are 
added by taking some of the input data.

5.0 SYSTEM STUDIES

The proposed method is tested on WSCC-9 bus 
system and New England (NE)-39 bus system. 
Matlab/Simulink 7.0 is used for all the fault 
simulations and LIBSVM [18] toolbox is utilized 
for fault classifi cation and location. Various faults 
are created by varying fault impedances and the 
synchrophasor voltage and current measurements 
are assumed to be available at the PMUs. For 
training patterns, faults are created at 5, 15, 25, 35, 
45, 55, 65, 75, 85 and 95 percentage of the overall 
length of the transmission lines. Therefore, the 
training patterns are generated for four types of 
faults on all the lines over 10 different locations 
having six impedance values of 2, 5, 10, 20, 50 
and 100 ohms. Test patterns are generated for the 
same four faults at distances 20, 40, 60 and 80 
percentage of overall length of the transmission 
line and the impedance values considered are 3, 
7, 15, 30, 40 and 60 ohms. 

The input patterns for both training and testing of 
the SVM and RBFNNs are normalized between 
(–1, 1) and then utilized for the classifi cation and 
regression. The PMUs placement for both the 
test systems is as given in the Table 1. Thus, the 
proposed scheme applied on the test system results 
in OPP at buses 4, 7, 9 and 10 for confi guration-1 
and buses 4, 7 and 9 for the confi guration-2 
of the WSCC-9 bus and 18 PMUs for the 
NE-39 bus system making both the systems 
complete transmission line fault observable as 
shown in Figures 5–7 respectively. 

TABLE 1
OPP FOR WSCC-9 BUS AND NE-39 BUS 

SYSTEMS
System OPP

WSCC-9 bus Confi guration-1 4, 7, 9, 10
Confi guration-2 4, 7, 9

NE-39 bus

2,4,6,8,10,12,1
4,16,17,18,19,2
0,22,23,25,26,2
9,39
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FIG. 5 WSCC-9 BUS SYSTEM CONFIGURATION-1

FIG. 6 WSCC-9 BUS SYSTEM CONFIGURATION-2

FIG. 7 NE-39 BUS SYSTEM WITH OPP

5.1 WSCC-9 bus System

Breaker and half busbars scheme is 
implemented for the WSCC-9 bus system, in 
which two configurations are considered and 
shown in Figures 5 and 6. It is assumed that 
at the bus 4, breaker and half bus-bars scheme 
is installed.

 PMU
  OAD

5.1.1 SVM based fault diagnosis

Training patters are generated for four types of 
faults i.e., SLG, DLG, LL and LLL faults, on 
all the 6 transmission lines over 10 different 
locations with 6 varying impedance values. The 
total patterns are 360 (=6×10×6) for each type of 
fault. Test patterns are generated for four faults on 
all lines over 4 different locations with 6 varying 
impedance values and a total of 6×4×6=144 for 
each fault type. Tables 2 and 3 give the training 
and testing accuracies of the SVM classifi ers. 
For confi guration-1, the SVM-1 detects fault 
with 100% testing accuracy and SVM-2 gives 
96.8% testing accuracy for line on which fault 
has taken place whereas SVM-3 gives 94.4 % 
testing accuracy for classifying the fault. For 
confi guration-2, the SVMs 1, 2 and 3 gives 
100% accuracy for detecting a fault, fault line 
identifi cation and fault classifi cation. The fault 
location using four support vector regressors 
(SVRs) is carried out for the same training and test 
patterns, which are used in SVM-classifi cation. 
The SVR-1, SVR-2, SVR-3 and SVR-4 give 
the locations of SLG, DLG, LL and LLL faults, 

TABLE 2

SVM PHASE-I RESULTS FOR WSCC-9 BUS 
SYSTEM (CONFIGURATION-1)

Classifi er C γ Training 
accuracy

Testing 
accuracy

SVM-1 0.125 0.0078125 100 % 100 %

SVM-2 2048 0.03125 100 % 96.805 %

SVM-3 0.5 0.5 100 % 94.94 %

TABLE 3

SVM PHASE-I RESULTS FOR WSCC-9 BUS 
SYSTEM (CONFIGURATION-2)

Classifi er C γ Training 
accuracy

Testing 
accuracy

SVM-1 0.5 0.0078125 100 % 100 %

SVM-2 2048 0.03125 100 % 100 %

SVM-3 2.0 0.5 100 % 100 %
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respectively. Table 4 presents the fault location 
for WSCC-9 bus system without breaker and half 
scheme consideration. The fault location results 
are shown for the line 1–4, which came out to 
be critical line by real power performance index 
based contingency analysis. The percentage error 
in fault location is given by

Estimated location Actual location% Estimation error 100
Total line length

−
= ×

The SVM regressors are provided with one cycle 
of fault data i.e., for 1 phasor per cycle of 50 Hz 
system, the phasor reporting rate is 50 phasors 
per sec. The fault distance estimation for various 
types of faults with two fault resistance values is 
given in Table 4. The SVM-1 detects fault and 
SVM-2 identifi es the line and SVM-3 classifi es 
the fault. The SVR-1 gives the SLG fault location 
with C=100, ν = 0.1 and γ = 0.5, SVR-2 gives 
the DLG fault location with C = 1000, ν = 0.5 
and  γ = 0.5, SVR-3 gives the LL fault location 
with C=100, ν = 0.05 and γ = 0.5, SVR-4 gives 
the fault location with C = 1000, ν = 0.1 and 
γ = 0.01 which are shown in Table 4.

TABLE 4
FAULT LOCATION COMPARISON RESULTS 

FOR WSCC-9 BUS SYSTEM

Fault locators Maximum 
% error

Minimum 
% error

SVR

SVR-1 0.093 9.5e–4

SVR-2 0.137 2.65e–4

SVR-3 0.8 5.64e–4

SVR-4 0.7255 0.017

RBFNN

RBFNN-1 0.62 0.009
RBFNN-2 1.245 3.75e–4

RBFNN-3 1.395 6.8e–4

RBFNN-4 2.45 0.86e–4

5.1.2 RBFNN based fault diagnosis

The RBFNNs are trained with the same training 
and test patterns that are generated for SVM. 
Selection of proper spread values which determine 
the width of the radial basis function in designing 

RBFNN. For the confi guration-1, the optimized 
values of spread, hidden neurons and testing 
accuracy for the RBFNN are given below:

RBFNN-1• : 375 hidden neurons and 0.5 
spread provides 99.89% testing accuracy.

RBFNN-2• : 625 hidden neurons and spread 
1.1 provides 91.32 % testing accuracy.

RBFNN-3• : 575 hidden neurons and spread 
0.707 provides 93.25 % testing accuracy. 

For the confi guration-2, the optimized values 
of spread, hidden neurons and testing accuracy 
for the RBFNN-1 to RBFNN-3 are, 175 hidden 
neurons and 1.1 spread provides 99.19 % testing 
accuracy, 625 hidden neurons and spread 1.05 
provides 98.82 % testing accuracy, 775 hidden 
neurons and spread 0.707 provides 99.30 % 
testing accuracy, respectively. 

For fault location, four RBFNNs are given the 
same input patterns that are used for the fault 
location using SVM. The optimized values for 
locating fault using RBFNN after number of 
observations are spread=0.5, hidden neurons=175 
for SLG fault, spread=0.707, hidden neurons=175 
for DLG fault, spread=1.05, hidden neurons=200 
for LL fault and spread=1.0, hidden neurons=200 
for LLL fault obtained from RBFNNs 1, 2, 3 
and 4, respectively. Table 5 gives the comparison 
between SVR and RBFNN fault location 
methods, from which it is clear that SVM 
fault locator gives better estimate of the fault 
distance than RBFNN. Figure 8 shows the 
fault location error estimate in percentage for 
all the four fault types of WSCC-9 bus system, 
confi gurations-1 and 2.

TABLE 5

SVM-C RESULTS FOR NE-39 BUS SYSTEM

Classifi er C γ
Training 

accu-
racy

Testing ac-
curacy

SVM-1 0.125 0.0078125 100 % 100 %

SVM-2 8192 0.03125 100 % 99.814 %

SVM-3 32 0.0001225 97.22 % 100 %
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FIG. 8  SLG, DLG, LL AND LLL FAULTS WITH UPPER FIGURE FOR CONFIGURATION-1 AND LOWER FIGURE FOR 
CONFIGURATION-2 OF WSCC-9 BUS SYSTEM AS SHOWN IN (A), (B), (C) AND (D) RESPECTIVELY

5.2 NE-39 bus System

5.2.1 SVM based fault diagnosis

Training patters are generated for four types 
of faults on 10 transmission lines selected by 
conducting contingency ranking using real power 
security index over 10 different locations with 6 
varying impedance values, a total of 10×10×6=600 
for each type of fault. Test patterns are generated 
for four faults on selected 10 critical lines over 
4 different locations with 6 varying impedance 
values and a total of 10×4×6=240 for each fault 
type. Table 6 presents the training and testing 
accuracies of the SVM classifi ers. The SVM-1 
detects the fault with 100 % testing accuracy, 
SVM-2 gives 99.81 % testing accuracy for 
line on which fault has taken place and SVM-3 
gives 100 % testing accuracy for classifying the 
fault. Once the fault has been classifi ed, the next 

step is to locate the fault. Figure 9 shows the 
fault location error in percentage values for the 
lines which came to be critical by real power 
performance based contingency analysis for all 
the four fault types. The SVR-1 gives the SLG 

TABLE 6
FAULT LOCATION COMPARISON RESULTS 

FOR NE-39 BUS SYSTEM

Fault locators Maximum 
% error

Minimum % 
error

SVR

SVR-1 3.85 0.0355
SVR-2 4.002 0.011
SVR-3 0.145 6e–4

SVR-4 3.8 0.02

RBFNN

RBFNN-1 8.425 0.0017
RBFNN-2 8.34 0.0275
RBFNN-3 6.39 0.0525
RBFNN-4 8.04 0.0105
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fault location with C = 10, ν and γ = 0.5, SVR-2 
gives the DLG fault location with C = 100, 
ν = 0.1 and  γ = 0.1, SVR-3 gives the LL fault 
location with C = 100, ν = 0.1 and γ = 0.5, SVR-4 
gives the fault location with C = 1000, ν = 0.01 
and γ = 0.5.

5.2.2 RBFNN based fault diagnosis

The RBFNNs are trained with the same 
training and test patterns that are generated 
for SVM. Selection of proper spread values 
which determines the width of the radial basis 
function is important in designing RBFNN. The 
optimized values of spread, hidden neurons and 
testing accuracy for the RBFNN-1 to RBFNN-3 
are, 200 hidden neurons and 0.95 spread obtained 
99.23 % testing accuracy, 925 hidden neurons and 
spread 0.707 obtained 94.31 % testing accuracy, 
800 hidden neurons and spread 0.707obtained 
98.26 % testing accuracy, respectively.

FIG. 9  SLG, DLG, LL AND LLL FAULTS FOR NE-39 BUS SYSTEM AS SHOWN IN (A), (B), (C) AND (D) RESPECTIVELY

6.0 CONCLUSIONS

In this paper, a topological observability using 
binary integer programming based method for the 
optimal placement of the Phasor Measurement 
Units (PMUs) to ensure transmission line fault 
observability and a Support Vector Machine 
(SVM) based fault diagnosis utilizing the 
synchrophasor measurements have been 
proposed. The proposed placement of PMU 
technique has been examined in the presence 
of breaker and half bus-bars scheme on 
WSCC-9 bus test system. It is observed that 
breaker and half scheme application increases 
the PMUs number by one. The phasor data 
generated by the PMUs, which are placed 
optimally in the system, can be effectively used 
for the transmission line fault diagnosis. It is 
observed that from the proposed fault diagnosis 
method, SVM based fault classifi cation 
and location give high accurate results than 
compared to RBFNNs. 
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