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1.0 INTRODUCTION

The induction motor parameter estimation is the 
art and science of building mathematical models 
of dynamic systems from observed input-output 
data. It can be seen as the interface between the 
real world of applications and the mathematical 
world of control theory and model abstractions. 
The knowledge of all the machine parameters is 
very important to tune the controllers of a high 
performance motor drive system. The accurate 
knowledge of the induction motor parameters is 
critical for the sensor less drive strategies based 
on the stator flux estimation [1]. This fact has 
stimulated the development of specific techniques 
to determine the induction motor parameter [2]. 
There are various techniques to estimate the 
induction motor parameters, such as: 

1. Conventional techniques

2. Soft computing techniques
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a. Fuzzy system

b. Artificial neural network

c. Genetic Algorithms

d. PSO

e. Integration of above techniques

2.0 CONVENTIONAL METHODS

There are various conventional methods 
available with their merits and demerits [3, 4]. 
There are many ways to detect mechanical and 
electrical problems in induction motors, either 
directly or indirectly, such as motor current 
signature analysis, line neutral voltage signature, 
instantaneous reactive power signature, stator 
current and motor efficiency, electromagnetic 
field monitoring, chemical analysis, temperature 
measurement, infrared measurement, acoustic 
noise analysis, partial discharge measurement and 
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vibration monitoring and fault detection based on 
parameter adaption [5]. The Knowledge of all the 
machine parameters is very important to tune the 
controllers of a high performance motor drive 
system [6, 7, 8]. For several decades, the Kalman 
filter has proved to be a powerful tool for state 
and parameter estimation of linear and nonlinear 
systems and has been applied in induction motor 
for estimation of flux [9, 10] and its parameters 
[11]. Induction motor parameters change with 
temperature, frequency and saturation. The 
consequence of any mismatch between the 
parameter values used in the controller and those 
in the motor is that the actual rotor flux position 
does not coincide with the position assumed by 
the controller. The parameters that may need to 
be identified offline or tracked online depend on 
the vector control scheme under consideration 
[12]. The most important offline identification 
and online parameter estimation techniques are 
reviewed.

3.0 OFF-LINE PARAMETER 
ESTIMATION TECHNIQUES

It is often the case in practice that one manufacturer 
supplies the inverter with a vector controller, while 
the machine comes from another manufacturer. 
It is then not possible to set the parameters of 
the controller in advance and these have to be 
set on site, once when the inverter is connected 
to the machine. Such a situation has led to the 
development of the so-called self-commissioning 
procedures for vector controlled induction 
machines. The main idea behind this concept is 
that the controller automatically determines all of 
the parameters of an induction machine, required 
for vector control. The automated procedure of 
testing and calculation is done following the 
first enabling of the controller. As the induction 
motor may already be coupled to a load, the 
tests aimed at self-commissioning have to 
identify the required parameters at standstill. The 
identification is therefore performed with single-
phase supply to the machine. In principle, two 
types of excitation may be applied dc or ac. The 
one ideal for true self-commissioning is dc. From 

applied dc voltage and resulting dc steady state 
current, one finds the value of the stator resistance. 
Determination of the remaining parameters is 
then based most frequently on transient current 
response that follows application of the dc 
voltage. Self-commissioning schemes that rely 
on this approach are those described in [13]. The 
methods regarded as suitable for commissioning 
but inappropriate for self-commissioning are 
those that either require some special conditions 
to be satisfied during the commissioning (for 
example, the machine is allowed to rotate) or 
they require substantially more complicated 
mathematical processing of the measurement 
results, when compared to the self-commissioning 
methods. For example, procedures described 
in [14] are all based on some tests with single-
phase supply to the machine. The maximum 
likelihood estimation method described in [15], 
which requires application of the recursive least 
squares algorithm, this being the same as for the 
procedure of (16). The second possible excitation 
for parameter identification at standstill is single-
phase ac. Standstill frequency response for the 
parameter identification [17]. A method based on 
trial- error and essentially does not require any 
computations. Some of the offline identification 
procedures surveyed so far enables identification 
of the machine’s magnetizing curve in addition to 
other rated parameter values [18]. 

It should be noted that accuracy of parameter 
determination in all offline identification techniques 
depends on the sample rate selection, quantization 
errors, resolution and accuracy of sensors [19]. 
Identified parameter values will therefore always 
be characterized with certain error margin. The 
major problem encountered in offline parameter 
identification at standstill is undoubtedly the 
inverter lock-out time and nonlinearity, which 
make the accurate parameter determination on 
the basis of reconstructed voltages very difficult 
without prior knowledge of the inverter voltage 
drop characteristics. A technique for overcoming 
this problem has recently been proposed based on 
recursive least squares [20]. 
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4.0 ON-LINE ROTOR TIME CONSTANT 
ESTIMATION TECHNIQUES

The major effort has been put into development 
of rotor time constant (rotor resistance) on-line 
estimation methods. Due to a huge number of 
proposed solutions of very different nature, these 
are further classified into four subgroups.

A. Spectral Analysis Techniques

This group of methods encompasses all of the 
cases where online identification is based on the 
measured response to a deliberately injected test 
signal or an existing characteristic harmonic in 
the voltage/current spectrum [21]. Stator currents 
and/or voltages of the motor are sampled and the 
parameters are derived from the spectral analysis of 
these samples. In spectral analysis, a perturbation 
signal is used because under no-load conditions 
of the induction motor, the rotor induced currents 
and voltages become zero, so slip frequency 
becomes zero, and hence, the rotor parameters 
cannot be estimated. In [21] the disturbance to 
the system is provided by injecting negative 
sequence components. An online technique for 
determining value of the rotor resistance was used 
by detecting the negative sequence voltage. The 
main drawback of this method is that the strong 
second harmonic torque pulsation is induced due 
to the interaction of positive and negative rotating 
components of MMF.

B. Observer-Based Techniques

Loron and Laliberté [22] describe the motor 
model and the development and tuning of an 
extended Kalman filter (EKF) for parameter 
estimation during normal operating conditions 
without introducing any test signals. The 
proposed method requires terminal and rotor 
speed measurements and is useful for auto-tuning 
an indirect field-oriented controller or an adaptive 
direct field-oriented controller. Zai, De Marco, 
and Lipo [23] proposed a method for detection 
of the inverse rotor time constant using the EKF 
by treating the rotor time constant as the state 
variable along with the stator and rotor currents. 
This is similar to a previously mentioned method 

that injected perturbation in the system, except 
that in this case, the perturbation is not provided 
externally. Instead, the wide-band harmonics 
contained in a PWM inverter output voltage 
serve as an excitation. This method works on the 
assumption that when the motor speed changes, 
the machine model becomes a two-input/two 
output time-varying system with superimposed 
noise input. The drawbacks are that this method 
assumes that all other parameters are known and 
the variation in the magnetizing inductance can 
introduce large errors into the rotor time constant 
estimation. The application of the EKF for slip 
calculation for tuning an indirect field oriented 
drive is proposed in [24, 25]. Using the property 
that in the steady state the Kalman gains are 
asymptotically constant for constant speeds, the 
Riccati difference equation is replaced by a look-
up table that makes the system much simpler. The 
disadvantage is that, although the complexity of 
the Riccati equation is reduced, the full-order EKF 
is computationally very intensive as compared to 
the reduced order-based systems.

C. Model Reference Adaptive System-Based 
Techniques

The third major group of online rotor resistance 
adaptation methods is based on principles of 
model reference adaptive control. This is the 
approach that has attracted most of the attention 
due to its relatively simple implementation 
requirements. The basic idea is that one quantity 
can be calculated in two different ways. The first 
value is calculated from references inside the 
control system. The second value is calculated 
from measured signals. One of the two values 
is independent of the rotor resistance (rotor 
time constant). The difference between the two 
is an error signal, whose existence is assigned 
entirely to the error in rotor resistance used in 
the control system. The error signal is used to 
drive an adaptive mechanism (PI controller) 
which provides correction of the rotor resistance. 
Any method that belongs to this group is based 
on utilization of the machine’s model and its 
accuracy is therefore heavily dependent on the 
accuracy of the applied model [26].
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D. Other Methods

There exist a number of other possibilities for 
online rotor resistance (rotor time constant) 
adaptation, such as those described in [27]. It 
is based on a special switching technique of the 
current regulated PWM inverter, which allows 
measurement of the induced voltage across the 
disconnected stator phase. The rotor time constant 
is then identified directly from this measured 
voltage and measured stator currents. The 
technique provides up to six windows within one 
electric cycle to update the rotor time constant, 
which is sufficient for all practical purposes.

5.0 ONLINE ESTIMATION OF STATOR 
RESISTANCE

An accurate value of the stator resistance is 
of utmost importance in this case for correct 
operation of the speed estimator in the low speed 
region. If stator resistance is detuned, large 
speed estimation errors and even instability at 
very low speeds result. It is for this reason that 
online estimation of stator resistance has received 
considerable attention during the last decade 
[28, 29]. The other driving force behind the 
increased interest in online stator estimation was 
the introduction of direct torque control (DTC), 
which in its basic form relies on the estimation 
of stator flux from measured stator voltages and 
currents. 

6.0 SOFT COMPUTING TECHNIQUES

The soft Computing Techniques have been 
employed to assist the fault-detection task to 
correctly interpret the fault data, such as expert 
systems, fuzzy logic, fuzzy NN, artificial neural 
network (ANN), wavelet transform technique and 
genetic algorithm.

A.	 Fuzzy	system	for	parameter	identification

A higher order fuzzy system (FS) identification 
method was drawn attention of many researchers 
for nonlinear dynamic system parameter 
identification [30]. To perform fault analysis on 

an induction motor using both experiments and 
simulation, and to study failure identification 
techniques applied for condition monitoring of the 
motor and finally to design an On-line condition 
monitoring system, fuzzy logic system using Lab 
View was suggested [31].

B.	 Artificial	Neural	Network	technique

Artificial Neural Network (ANN) is a system 
based on the operation of biological neural 
networks; it is an abstract simulation of a real 
nervous system. ANN’s have been applied 
with astonishing success in fields ranging from 
computer science to engineering to medicine. 

The Induction motor is a nonlinear multi variable 
dynamic system with parameters that vary with 
temperature, frequency, saturation, and operating 
point. The rotor parameters are the most important 
parameters for the control of the induction 
motor drives. The rotor resistance can change 
up to 150% over the entire operation [32, 33]. 
The rotor parameter estimation is proposed by 
estimating the rotor temperature in [33]. This is 
based on the fact that the temperature influences 
the fundamental frequency component of the 
terminal voltage for a given input current.

In many papers, the use of ANN has been tried 
for estimating the rotor angular speed. Among 
the methods used, it is possible to note two types 
of ANN designs. One is based on the machine 
model and the other one uses stator currents and 
voltages for direct speed estimation.

C.	 Integration	of	ANN	and	FS

ANNs and fuzzy logic are widely used in the 
areas of modelling, identification, diagnostics 
and control of nonlinear systems. There are 
numbers of methods that can provide true on-
line adaptation process of a fuzzy model. One of 
example is a Takagi–Sugeno–Kang fuzzy model, 
where the input space is automatically partitioned 
using a modified fuzzy adaptive resonance theory 
(ART) mechanism [34]. 
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A simple fuzzy controller implemented in the 
motor drive speed control has a narrow speed 
operation and needs much manual adjusting by 
trial and error if high performance is required 
[35]. On the other hand, it is extremely tough to 
create a training data for ANN that can handle 
all the operating modes [36]. A neuro-fuzzy 
controller (NFC) for the induction motor drive 
has the advantages of both FLC and ANN. Over 
the last decade, researchers reported works on 
the application of NFC for variable speed drives 
[37]. However, the conventional NFCs utilized in 
earlier works have a large number of membership 
functions and rules. 

D. Genetic algorithm (GA)

 The basic procedure to develop a genetic algorithm 
was described and the examples of its application 
for parameter identification were introduced.  In 
order to simplify the offline identification of 
induction motor parameters, a method based 
on optimization using a multi objective genetic 
algorithm was proposed [38].

Estimation of parameters of three-phase induction 
motor in order to conduct on-site energy audits 
of existing motors was used to project a cost 
savings. This technique used only a few sets of 
data (voltage, current, speed, power factor or 
torque if possible) from the field test of motor 
(on-site), instead of the no load and blocked 
rotor tests, coupled with the genetic algorithm for 
evaluating the equivalent circuit parameters [39].

E. Particle swarm optimization (PSO)

Over the past few decades, with the indirect field-
oriented control and non sinusoidal measurements, 
most of the methods can be roughly divided into 
three categories: signal injection-based method 
[40], model reference adaptive system-based 
technique, and optimization techniques. The 
signal injection-based method is to improve the 
estimation of low speed performance of sensor 
less schemes or to excite the machine to create 
various response signals. They often require extra 
hardware for signal injection. Applications of 

signal injection have been presented in dealing 
with the stator and rotor winding temperatures. 
The model reference adaptive system uses the 
error between the estimated and the reference 
signals to calculate the parameters. In optimization 
techniques, parameter estimation has been 
investigated by using the artificial intelligence 
including the particle swarm optimization (PSO) 
and the least squares strategy. These techniques 
have been reported to minimize the consequences 
of parameter sensitivity in vector controlled 
drives [41].

7.0 RESULT AND ANALYSIS

Flow Chart for the parameter estimation of I.M 
using soft computing Techniques is shown in 
Figure 1.

FIG. 1 FLOW CHART FOR PARAMETER ESTIMATION  
               USING SOFT   COMPUTING TECHNIQUE.

Current signature of the stator current at different 
load (no load, quarter load, half load) of the 
induction motor is shown below in Figure 2.
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FIG. 2 CURRENT SIGNATURE OF I.M AT DIFFERENT  
               LOAD

Analysis of the above current signature can be 
done by using Power spectral density is shown 
in Figure 3. 

FIG. 3 PSD OF THE CURRENT SIGNATURE

FIG. 4 VIBRATION SIGNATURE OF I.M AT DIFFERENT  
               LOAD

Vibration signature of the induction motor at 
different load (no load, quarter load, half load) 

is shown in the Figure 4. It is observed that the 
vibration of the machine is reduced when the 
load is increased. That vibration signature can be 
analysed by the power spectral density (PSD) as 
shown in the Figure 5.

FIG. 5 PSD OF THE VIBRATION SIGNATURE

FIG. 6 TEMPERATURE RISE IN I.M AT DIFFERENT  
               LOAD (NO LOAD, QUARTER LOAD, HALF  
               LOAD) WITH FAULTY COOLING SYSTEM.

Temperature rise in I.M at different Load (no 
load, quarter load, half load) with faulty cooling 
system is shown in Figure 6 and PSD of that 
signal is shown in Figure 7.

A.  Implementation of Genetic Algorithm and 
Simulation Result

To verify genetic algorithm the Matlab/Simulink 
environment is used. The simulation model is 
used in this case instead of real induction motor 
because of checking algorithm. Sample time 0.25 
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ms is used for realization of simulation and space 
of solutions is used by the following intervals:

Rs Є (1; 10), Rr Є (1; 5), Ls Є (0.1; 1), Lm Є 
(0.1;1), J Є (0.0001; 0.1)

FIG. 7. PSD OF THE TEMPERATURE RISE IN I.M AT  
               DIFFERENT LOAD WITH FAULTY COOLING  
               SYSTEM.

Application of designed GA is tested for the 
different amplitudes and frequencies of the input 
voltages. The results of several identifications are 
presented in Table 1, where the percentage errors 
of this results and reference values are calculated. 
From the table, it is observed that the increase of 
the frequency decreases the accuracy of parameter 
identification.

The identification values of the system 
parameters approximate to their real values by 
the minimization of criterion. For the parameter 
identification, the integral criterion is used:

 ....(1)

Where ym is output of the simulation model and 
y is output of the real system.

8.0 CONCLUSION

The parameters of induction motor may vary 
due to several factors such as: machine internal 
temperature, machine ageing, magnetic saturation, 
the coupling effect  between the internal system 

and an external system. In this paper, an overview 
of estimation of induction motor parameters 
has been presented using conventional and 
soft computing techniques. The soft computing 
techniques are better than conventional techniques 
in terms of adaptability and flexibility.

TABLE 1
RESULTS OF IDENTIFICATION FOR THE DIFFERENT   AMPLITUDES AND FREQUENCIES OF THE 

INPUT VOLTAGES
Rs Rr Ls Lm J

Reference Value 7.607 3.71 0.6025 0.5797 0.0018
7.5 V, 5 Hz
Ts=2.5 ms
F=0.0013542

Identified Value 7.5975 3.6812 0.5992 0.5771 0.001695

15 V, 10 Hz
Ts=2 ms
F=0.0015665

Identified Value 7.5971 3.7074 0.6031 0.58215 0.0017028

30 V, 20 Hz
Ts=0.5 ms
F=0.0082013

Identified Value 7.627 3.6668 0.59843 0.57563 0.0016939

45 V, 30 Hz
Ts=0.2 ms
F=2.8285

Identified Value 7.8823 3.5949 0.59231 0.57027 0.0016335
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