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NOMENCLATURE
Ai, Bi, Ci 	 :	 fuel cost coefficients of unit ‘i’
CSUi 	 : 	 cold start-up cost of unit ‘i’ ($)
Di, Ei 	 :	 start-up cost coefficients of unit ‘i’
F 	 : 	 total fuel cost($)
Fi(Pi,t) 	 : 	 fuel cost of unit ‘i’ at hour ‘t’ ($)
HSUi 	 : 	 hot start-up cost of unit ‘i’ ($)
i 	 : 	 index of thermal units
Ui,t 	 : 	 status of units
N 	 : 	 number of units
PDt 	 : 	 power demand at hour ‘t’ (MW)
Pi,t 	 : 	 output power of unit ‘i’ at hour ‘t’ 	
		  (MW)
Pi,min 	 : 	 minimum output power limit of
	 	 unit‘i’ (MW)
Pi,max 	 :	 maximum output power limit of 	
	 	 unit‘i’(MW)

Rt 	 : 	 maximum reserve capacity at hour 	
	 	 ‘t’ (MW)
SUi 	 : 	 start-up cost of unit ‘i’
SDi 	 : 	 shut-down cost of unit ‘i’
SOi 	 : 	 initial cold start-up cost of unit  
	 	 ‘i’ ($)
t 	 : 	 time period (sec)
T 	 :	  number of hours
Sini 	 : 	 initial start-up hours of unit ‘i’(hrs)
Ti,on 	 : 	 continuous on-time duration of unit 	
	 	 ‘i’ (hrs)
Ti,off 	 : 	 continuous off-time duration of unit 	
	 	 ‘i’ (hrs)
Ti,up 	 : 	 minimum up time of unit ‘i’ (hrs)

Ti,down 	 : 	 minimum down time of unit ‘i’ (hrs)

Ti,cold 	 : 	 cold start hours of unit ‘i’ (hrs)
M 	 : 	 number of layers in the network
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s 	 : 	 index of neurons in a layer of the network
n 	 :  	number of neurons in a layer of the 		
	 	 network
w 	 :  	weights of neurons in a layer of the 		
	 	 network
b 	 :  	biases of neurons in a layer of the 	 	
	 	 network
e 	 :  	errors of a layer in the network
a 	 :  	actual output of the network
to 	 :  	target output of the network
p 	 :  	input pattern to the network
tr 	 :  	transpose of a matrix
k 	 :  	iteration number
α 	 :  	learning rate
f 	 :  	transfer function
ḟ 	 :  	derivative of the transfer function

1.0	 INTRODUCTION

In any power system the load on the system is 
dynamic in nature. During the daytime and early 
evenings it is higher as the industrial loads are 
high and during the late evenings and early 
mornings it is lower as most of the population 
is asleep [1],[8]. Hence the load on the system 
varies from time to time and this load must be met 
with the available resources economically. When 
sufficient generation is kept online throughout 
the day to meet the peak demand, there is a 
possibility that some of the units may operate at 
their minimum generation limits during the off-
peak periods. This may become uneconomical 
due to unnecessary running of units when load 
demand is less. Now the problem for any power 
system operator during this time is to determine 
which units are to be taken offline and for how 
long.

Unit Commitment (UC) problem in a power 
system refers to determining the ON/OFF states 
of the generating units that minimize the total 
operating cost for a given time horizon. The 
UC problem solution is a complex optimization 
problem. Exact solution for the UC problem can 
be obtained by completely enumerating all the 

feasible combinations of the generating units 
which is generally a huge number. Mathematically 
the UC problem is formulated as non-linear, large 
scale, mixed integer combinatorial optimization 
problem with several constraints [3],[4].

The UC schedule is obtained by including many 
factors such as

i.	 Operating costs/constraints of the units.

ii.	 Generation and spinning reserve constraints.

iii.	 Start-up and shut-down constraints of the 
plant.

Proper scheduling of the units ensures better 
usage of the available capacity.

Many methods have been proposed to solve the 
UC problem. Earlier, classical methods such as 
Dynamic programming (DP), Priority list (PL), 
Lagrangian Relaxation (LR) were used to solve 
the unit commitment problem. Among these, PL 
method is the simplest method but the solution 
obtained is rough and sub-optimal. DP method 
has been far more a flexible method to solve the 
UC problem but the computational time required 
is more for finding the optimal solution due to the 
“curse of dimensionality”. LR method provides 
a faster solution to solve the short-term UC 
problem, but it fails in dealing with the solution 
quality and feasibility problems as the number of 
units is increased[5]. 

During the past few years Neural Networks (NN) 
have been used to find the solution for the UC 
problem. Artificial Neural Networks (ANNs) 
have the advantage of parallel processing due 
to which the computational time is considerably 
reduced. They also have the advantages of rapid 
convergence and good solution quality. For these 
reasons, ANNs are being adapted now-a-days 
very frequently to solve any problem.

The neural network computing has opened up 
a new route for the optimization of generation 
scheduling. With proper and sufficient training, 
the information regarding the optimal operation 
of the system can be stored in the network and 
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the output can be obtained in a much shorter time 
whenever it is required.

In this paper, a multi-layered feed-forward 
back propagation neural network (FF-BPNN) 
is considered to determine the variables 
corresponding to the operating level of generating 
units in a power system and total production cost. 
Load demand profile of a utility is given as input 
to the neural network and the generation capacity 
of the units is the output from the neural network. 
This method is tested on a 3- and 10- unit 
systems using MATLAB software and the results 
obtained from this method are compared with 
those obtained from the classical conventional 
methods such as PL, DP, LR and other neural 
network methods such as DPHNN (DP based fast 
computation Hopfield Neural Network) in terms 
of total operating cost and computational time.

2.0	 PROBLEM FORMULATION

The UC schedule should be able to minimize the 
total operational cost to meet the predicted power 
demand and satisfy all constraints. The objective 
function and various constraints of the UC 
problem are explained in the following sections.

2.1	 Objective Function

The objective function of UC problem is to 
minimize the sum of fuel cost,start-up cost and 
shut-down cost of all individual units subjected to 
various constraints for a given period of time [6]. 
It can be mathematically described as

       ....(1)

The fuel cost is the major component of the total 
operating cost and is given in quadratic form as

	 ....(2)

Start-up cost depends upon the off-time of the unit. 
It varies from a maximum value when the unit is 
started from a cold state and to a minimum value 
if the unit has been shut down recently. Hence it 
can be expressed as an exponential function of 
the off-time of a generating unit.

	 ....(3)

Time dependent start-up cost is simplified as 
follows

     ....(4)

2.2	 Constraints

The UC problem has many constraints depending 
on the nature of the power system under 
consideration. Constraints that are considered in 
this work are divided into the following categories.

2.2.1	System Constraints

2.2.1.1	Power balance equation

The sum of the output powers of all the generat-
ing units which are online is equal to the fore-
casted power demand

	 ....(5)

2.2.1.2	Spinning Reserve constraints

Spinning reserve is the total available generation 
capacity from all the units spinning on the system 
minus the load demand present on the system.

	 ....(6)

2.2.2	Unit constraints

2.2.2.1	Limits on the generating units

The maximum and minimum output limits on the 
generating units
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	 ....(7)

2.2.2.2	Minimum up time

A particular unit must be ON for certain no. of 
hours before it can be shut down

	 ....(8)

2.2.2.3	Minimum down time

A particular unit must be OFF for certain no. of 
hours before it can be brought online

	 ....(9)

Minimum up and minimum down time constraints 
can be incorporated in the UC problem as

	 ....(10)

2.2.2.4	Must run units

Due to the economic and reliability considerations, 
these must run units are included in the UC 
problem.

3.0	 ARTIFICIAL NEURAL NETWORK

ANN follows the functionality of the human 
brain. There are innumerable connections among 
billions of neurons in the human brain and they 
are so extensive that the whole network can learn 
and adapt to various complicated problems. ANN 
executes several processes in a parallel manner 
for obtaining outputs instead of carrying out 
commands and performing calculations in a serial 
order. An ANN learns from experience and their 
characteristics make them suitable for solving 
practical problems quickly and accurately.

Now-a-days ANN is finding applications in several 
power system operation and control problems[7]. 
ANN’s application for power system optimization 
problems has become an active research area in 

recent years. Furthermore its application to UC 
is posing an interesting engineering application 
for estimating ANN parameters based on 
typical load curves and their corresponding UC 
schedules. Initially the current load curve pattern 
is compared with the information available in the 
load database and the most economical schedule 
for the generating units is selected.

The ANN used in this study is Feed-forward 
multilayer network with Error Back-Propagation 
training algorithm (BPA) with supervised 
learning. Back-propagation indicates that the 
ANN learns by examples and repetition. In 
supervised learning, both the inputs and outputs 
are provided to the network and the network then 
processes the inputs and compares its resulting/
actual outputs with the desired/target outputs. The 
errors are then calculated, causing the system to 
adjust the weights which control the network in an 
iterative process until the errors reach a minimum 
tolerance value [2].

The architecture of ANN consists of several 
layers. The layers are input, hidden and the output 
layers.The total number of layers depend on the 
problem requirement. Input layer receives the 
data and sends the output signals to the hidden 
layers. Hidden layer gets the inputs from input 
layers and sends its output to the output layer. 
The output layer sends its output to the outside 
upon receiving the signal from the hidden layers 
[9]. A transfer function is used to represent the 
interior mechanism of a neuron. We next discuss 
the Back propagation algorithm in solving the 
Unit Commitment.

3.1	 Back Propagation Algorithm

3.1.1	Overview

In order to train single layer networks, we can 
correlate weights and biases with error and devise 
a new strategy to change them so as to reduce error. 
But for training multilayer networks, this strategy 
can be used only for the output layer (since output 
layer weights and biases are directly involved in 
the final output and hence error). In such a case, 
correlation between weights and biases of hidden 
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and output layers is not possible to find the error. 
To rectify this problem a new algorithm has been 
devised by Werbos and Rumelhart named as Back 
Propagation Algorithm (BPA).

In Backpropagation neural network (BPNN), the 
outputs of each node in a layer are connected to 
inputs of all the nodes in the subsequent layer. 
Data flows through the network in only one 
direction i.e., from input to output and the errors 
are propagated backward through the network 
from last layer to the first.

3.1.2	BPA General Algorithm

Step 1: 	 Decide the no. of hidden layers, no. of 
neurons in the input, hidden and the 
output layers.

Step 2: 	 Obtain the input pattern-target pairs.

Step 3: 	 Initialize weights and biases to small 
random values and set error threshold 
for stopping iterations. Set maximum 
no. of iterations in case if goal is not 
reached.

Step 4: 	 Apply first input pattern at the input 
layer and propagate it forward through 
the network to get the output at each 
output neuron.

	 ....(11)

	 ....(12)

	 ....(13)

Outputs of neurons in last layer are the network 
outputs.

Step 5: 	 Back propagate the error through the 
network

	 ....(14)

	 ....(15)

Step 6: 	 Update weights and biases.

	 ....(16)

	 ....(17)

Step 7: 	 Repeat from step 4 to 6 for remaining 
input pattern-target pairs.

Step 8:	 Continue to iterate until the difference 
between the network response and the 
target function reach an acceptable 
level.

3.2	 Implementation of FF-BPNN using 		
	 Neural Network Toolbox for solving UC 	
	 problem

The solution of UC problem using FF-BPNN can 
be implemented in MATLAB software through 
Neural Network Toolbox to reduce the computing 
time.For training the neural network, total load 
supplied is given as input and generation schedules 
of the thermal units are given as outputs to the 
network. The ON-OFF status of the generating 
units is obtained from the output of the testing 
phase of the neural network. This output can be 
used to calculate the running cost of each unit at 
the end of each hour. The running cost and start-
up costs at the end of each hour for the finally 
obtained status of a unit are summed together to 
give the operating cost of that particular unit at 
each hour. The overall operating cost is calculated 
by summing up the operating costs of all the units.

Procedure for solving UC problem using MAT-
LAB’s Neural Network Toolbox is as follows.

Step 1: 	 The input-target pattern pairs are to be 
kept ready using the “New variable” 
tab that is available in the MATLAB 
toolstrip.
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Step 2:	 Type “nntool” in command window, 
neural network/Data manager (nntool) 
editor appears.

Step 3: 	 Import the input data and target data 
which is to be used for training the 
neural network using the “Import” tab 
available in the neural network editor.

Step 4: 	 Create a new network by selecting 
the “New” tab in the neural network 
editor. A pop-up screen appears 
showing different types of networks, 
training functions, no. of layers, no. of 
neurons and transfer functions. Select 
the required ones and import data as 
per the requirement of the problem.

Step 5: 	 Now, open the created network using 
“Open” tab. Upon selecting, a new 
window appears with a pictorial view 
of the created network. This network 
can be trained by adjusting the training 
parameters.

Step 6: 	 The above Step 4 and Step 5 should 
be repeated several times by selecting 
different no. of layers and neurons 
until the error reduce to an acceptable 
level.

Step 7:	 Now, the trained neural network has 
to be simulated to obtain the required 
outputs.

4.0	 SIMULATION RESULTS

The proposed FF-BPNN method for UC has been 
implemented in MATLAB R2012b (8.0 version) 
and executed on Intel core i3-2nd generation (2.2 
GHz) PC with 4 GB RAM. This method has 
been tested on a 3- and 10-unit systems to solve 
UC problem. Results obtained are compared 
with those obtained from PL, DP, LR and other 
neural networks such as DPHNN in terms of total 
operating cost and computational time.

The simulation results are shown below.

4.1	 3-unit system

In this case, a 3-unit system is considered. The 
fuel cost data and power demands of 3-unit system 
are obtained from [1], [10] and are presented in  
Table 1 and Table 2 respectively. 

TABLE 1

FUEL COST DATA OF 3-UNIT SYSTEM

U Ai

($/h)
Bi
($/

MWh)

Ci
($/MW2h)

Pi,min
(MW)

Pi,max
(MW)

1 500 10 0.0020 100 600

2 300 08 0.0025 100 400

3 100 06 0.0050 50 200

TABLE 2

POWER DEMAND FOR 3-UNIT SYSTEM 
OVER 4-HOURS PERIOD

Hour Power demand (MW)

1   170

2   520

3 1100

4 330

Here for the 3 –unit system, two hidden layers with 
28 neurons in each hidden layer are considered 
in the design of the back propagation neural 
network. The input to the neural network contains 
the total load supplied and the three thermal 
generator outputs are considered as outputs of 
neural network. Thus there is one input node and 
three output nodes. ‘TRAINLM’ training function 
and ‘LEARNGDM’ learning functions along with 
tan-sigmoid transfer function are used to train the 
neural network.

The following training parameters (optional) are 
considered during training:
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1. 	 Maximum number of epochs to train=1000
2. 	 Epochs between updating display=25
3. 	 Mean-squared error goal=0.03
4. 	 Learning rate = 0.01

Learning stops when either the maximum number 
of epochs has occurred or the network’s mean-
squared error has dropped below the error goal.
Using these parameters, training of the designed 
network requires 856 epochs.

Figure 1 shows MSE vs Epoch for the trained 
FF-BPNN created for 3-unit system.

FIG. 1    MSE vs EPOCH FOR TRAINED FF-BPNN 	 	
	 CREATED FOR THE 3 – UNIT  SYSTEM

The UC schedule of 3-unit system for proposed 
FF-BPNN method is displayed in Table 3.

TABLE 3
UC SCHEDULE OF 3-UNIT SYSTEM FOR  

PROPOSED FF-BPNN METHOD
Hour Units Fuel cost

($)1 2 3

1 0 0 1 1265
2 0 1 1 4615
3 1 1 1 11400
4 0 1 1 2881

Total Fuel Cost ($) 20161
** 1 – UNIT COMMITTED
** 0 – UNIT NOT COMMITTED

TABLE 4
POWER DEMANDS FOR 10-UNIT SYSTEM 

OVER 24-HOURS PERIOD

Hour PD 
(MW) Hour PD 

(MW) Hour PD 
(MW)

1 700   9 1300 17 1000
2 750 10 1400 18 1100
3 850 11 1450 19 1200
4 950 12 1500 20 1400
5 1000 13 1400 21 1300
6 1100 14 1300 22 1100
7 1150 15 1200 23   900
8 1200 16 1050 24   800

TABLE 5

FUEL COST DATA OF 10-UNIT SYSTEM

U Ai

($/h)
Bi

($/MWh)
Ci

($/MW2h)
Pi,min
(MW)

Pi,max
(MW)

CSUi 
($/h)

HSUi 
($/h)

Ti,up 
(h)

Ti,down 
(h)

Ti,cold
(h)

Sini
(h)

1 1000 16.19 0.00048 150 455 9000 4500 8 8 5  8

2   970 17.26 0.00031 150 455 10000 5000 8 8 5  8

3   700 16.60 0.00200   20 130 1100 550 5 5 4 -5

4   680 16.50 0.00211   20 130 1120 560 5 5 4 -5

5   450 19.70 0.00398   25 162 1800 900 6 6 4 -6

6   370 22.26 0.00712   20   80 340 170 3 3 2 -3

7   480 27.74 0.00079   25   85 520 260 3 3 2 -3

8   660 25.92 0.00413   10   55 60 30 1 1 0 -1

9   665 27.27 0.00222   10   55 60 30 1 1 0 -1

10   670 27.79 0.00173   10   55 60 30 1 1 0   1



34	 The Journal of CPRI,  Vol. 11,  No. 1,  March 2015

The UC schedule of 10-unit system for proposed FF-BPNN method is displayed in Table 6.

TABLE 6

UC SCHEDULE OF 10-UNIT SYSTEM FOR PROPOSED FF-BPNN METHOD

Hour
Units

Fuel cost ($) Start-up Cost 
($)1 2 3 4 5 6 7 8 9 10

1 1 1 0 0 0 0 0 0 0 0 13668 0
2 1 1 0 0 0 0 0 0 0 0 14552 0
3 1 1 0 0 1 0 0 0 0 0 16819 900
4 1 1 0 0 1 0 0 0 0 0 18598 0
5 1 1 0 1 1 0 0 0 0 0 20020 560
6 1 1 1 1 1 0 0 0 0 0 22397 1100
7 1 1 1 1 1 0 0 0 0 0 23254 0
8 1 1 1 1 1 0 0 0 0 0 24145 0
9 1 1 1 1 1 1 1 0 0 0 27261 860
10 1 1 1 1 1 1 1 1 0 0 30057 60
11 1 1 1 1 1 1 1 1 1 0 31905 60
12 1 1 1 1 1 1 1 1 1 1 33890 60
13 1 1 1 1 1 1 1 1 0 0 30057 0
14 1 1 1 1 1 1 1 0 0 0 27264 0
15 1 1 1 1 1 0 0 0 0 0 24145 0
16 1 1 1 1 1 0 0 0 0 0 21513 0
17 1 1 1 1 1 0 0 0 0 0 20641 0
18 1 1 1 1 1 0 0 0 0 0 22397 0
19 1 1 1 1 1 0 0 0 0 0 24145 0
20 1 1 1 1 1 1 1 1 0 0 30057 490
21 1 1 1 1 1 1 1 0 0 0 27264 0
22 1 1 0 0 1 1 1 0 0 0 22736 0
23 1 1 0 0 1 0 0 0 0 0 17679 0
24 1 1 0 0 0 0 0 0 0 0 15423 0

Total ($) 559887 4090
Total Operating Cost ($) 563977

** 1 – UNIT COMMITTED
** 0 – UNIT NOT COMMITTED

4.2	 10-unit system

In this case, 10-unit system is considered. The 
power demands and the fuel cost data of 10-
unit system are obtained from [10], [11] and are 
presented in Table 4 and Table 5 respectively. 

Here for the 10 – unit system, two hidden 
layers with 73 neurons in each hidden layer are 
considered in the design of the back propagation 
neural network. The inputs and outputs of this 

neural network are same as that of 3-unit system 
except the total number of output nodes. There 
will be one input node and ten output nodes 
because there are ten thermal units. ‘TRAINSCG’ 
training and ‘LEARNGDM’ learning functions 
with tan-sigmoid transfer function are used to 
train the neural network.

The following training parameters (optional) are 
considered during training:

1. 	 Maximum number of epochs to train=1000
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2. 	 Epochs between updating display = 25

3. 	 Mean-squared error goal = 0.025

4. 	 Learning rate = 0.01

Using these training parameters, the training of 
this designed network requires 935 epochs. 

Figure 2 shows MSE vs Epoch for the trained FF-
BPNN created for the 10-unit system. FIG. 2    	MSE vs EPOCH FOR TRAINED FF-BPNN 	 	

	 CREATED FOR THE 10 – UNIT  SYSTEM

TABLE 7

COMPARISON OF RESULTS

3-unit 10-unit

Method Production Cost ($) Computational 
time (sec) Production Cost ($) Computational 

time (sec)

PL 20162.75 63 565664 197

LR [10] 20170 75 565825 235

DP 20168.16 84 565971 260

DPHNN [5] - - 588750 5.3

Proposed method
(FF-BPNN)       20161 0.46 563977 1.68

From Table 7 it is clear that the proposed 
approach provides a better solution to reduce the 
operating cost and solves the unit commitment 
problem effectively with less computational time 
compared to other available methods.

5.0	 CONCLUSION

Feed-Forward back propagation neural network 
(FF-BPNN) for solving Unit Commitment 
(UC) problem is presented in this paper. This 
method solves the UC problem without any huge 
computational burden and gives us a lower total 
operating cost within less computational time. 
However, it needs more samples of data to train 
the neural network for obtaining the results with 
least error. This method can be implemented 
further to a larger system having more number 
of generating units as well as different types of 
generating units in order to solve the UC problem 

effectively and efficiently.The main drawback 
of the proposed method is that neural network 
program is system dependent, which means that 
an ANN with its trained network for one system 
is not readily transferrable to another system with 
a different configuration. The training pattern 
developed for one system may not be suitable for 
another system.

Future work aims at eliminating its drawback 
and reducing the training time for the proposed 
network.
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