
The Journal of CPRI, 
Vol. 7, No. 1, March 2011 pp. 11–22

property of the bidden cost may become “the higher 
the output, the lower the incremental cost”, making 
the classical economic dispatch inapplicable. 
To solve this problem [3,4], an effi cient algorithm 
is provided which combines the powerful search-
ing mechanisms of simulated annealing with the 
mathematical foundations on global solutions.

2.0 FORMULATION OF AUCTION-
BASED DISPATCH PROBLEM FOR 
DEREGULATED POWER SYSTEMS

2.1 Notations 

The following notations are used consistently.

1.0 INTRODUCTION

The effi cient and optimum economic operation 
and planning of electric generation system [1,2] 
have always occupied an important position in 
electrical power industry. In classical economic 
dispatch algorithm, the quadratic production cost 
function and the incremental costs are used to 
make the algorithm simple, effi cient and accurate, 
and this algorithm depends heavily on production 
cost property, “the higher the output, the higher 
the incremental cost”. But in a deregulated system, 
the production cost is replaced by the sellers’ 
bidden cost function, including not only the pro-
duction cost but also the market strategy; and the 
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Ng: the number of the sellers;

ai, bi, ci: the parameters in the i-th seller’s bidden 
cost function;

Pi: the contracted amount of i-th seller’s bidden 
cost function;

Pimax, Pimin: the capacitnd lower limits of i-th 
seller’s bidden amount;

PD: the total market demand;

λ, μimax, μimin: Lagrange multipliers;

Fi (Pi): i-th sellers’ bidden cost function;

ICi (Pi): i-th sellers’ bidden incremental cost;

x: decision variable;

x*: optimal solution;

f (x): objective function;

D: constraint set;

N (x*, ε): neighborhood at x*;

Rn: n-dimensional real vector space.

2.2 Auction-Based Dispatch Problem 

(1) Bidden Cost Function 
In this paper, the seller’s bidden cost [5–9] function 
is assumed to be a quadratic, which is in the 
form of

Fi(Pi)=ai+bi×Pi+ci×P2
i (1)

Accordingly, the incremental cost is defi ned as the 
fi rst-order derivative of the bidden cost function.

ICi(Pi)=bi+2×ci×Pi (2)

In a deregulated power market, the seller’s 
objective is to make profi ts; the seller’s bidden 
cost function consists of not only the production 
cost but also the market strategy.

(2) Formulation of Auction-Based Dispatch 
Problem

The auction-based dispatch problem is formulated 
as the least bidden cost optimization problem, in 
which the seller’s total bidden cost is minimized 
while the balance of the supply and demand 
constraint and the capacity limit constraints are 
satisfi ed.

gN

i i
i 1

F (P )
=
∑  (3)

s.t: 
gN

i D
t 1

P P
=

=∑  (4)

Pimin ≤ Pi ≤ Pimax, i∈[1,Ng] (5)

The formulation seems to be the same as that of 
the classical economic dispatch problem, but the 
difference is that the objective function used here 
is the seller’s bidden cost.

3.0 NECESSARY CONDITION FOR 
OPTIMAL SOLUTION 

In problem (3), when

gN

imin D
t 1

P P
=

>∑  (6)

or 
gN

imax D
t 1

P P
=

<∑  (7)

there is no solution; 

when 
gN

imin D
t 1

P P
=

=∑ , each seller’s contracted 

amount is at its capacity lower limit; 

when 
gN

imax D
t 1

P P
=

=∑ , each seller’s contracted 

amount is at its capacity upper limit.

In the non-trivial case, when

gN

imin D
t 1

P P
=

<∑ and 
gN

imax D
t 1

P P
=

>∑
The following equations can be obtained from 
Kuhns–Tucker theorem,

i
imin imax g

i

F 0, i 1,....., N
P

∂ − λ − μ + μ = =
∂

gN
i Di 1

P P
=

=∑  (8)

imin imin i g(P P ) 0, i 1,......, Nμ × − = =  (9)
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imax i imax g(P P ) 0, i 1,......, Nμ × − = =  (10)

μimin ≥ 0, i=1,...,Ng (11)

μimax ≥ 0, i = 1,...,Ng  (12)

For the seller’s contracted amounts that do  
not hit the capacity limits, 

Pimin < Pi < Pimax, i ∈[1,Ng]   (13)

i

i

F
P

∂ = λ
∂  (14)

For the seller’s contracted amounts that hit  
the capacity upper limits, 

Pi = Pimax, i∈[1,Ng] (15)

i
imax

i

F
P

∂ = λ − μ ≤ λ
∂

 (16)

For the seller’s contracted amount that hit  
the capacity lower limits,

Pi = Pimin, i∈[1,Ng]  (17)

i
imin

i

F
P

∂ = λ + μ ≤ λ
∂

 (18)

In the following parts throughout, the discussion 
focuses on the non-trivial case.

Theorem 1: A Necessary Condition for Optimal 
Solution

Suppose P* = (P*1 ... P*Ng) is an optimal solution 
of problem (1.3), defi ne 

 λ = ICi (P*i) for Pimin < P*i < Pimax, i∈[1,Ng], 
then, 

IC i (P*i) ≥ λ  for P*i = Pimin. 

IC i (P*i) ≤ λ  for P*i = Pimax.      

3.1  Global Optimization for Auction- Based 
Dispatch Problem 

3.1.1  Some Defi nitions and Theorems for 
Global Minimization 

To simplify the presentation, some defi nition and 
theorems for global minimization are studied 
based on the following optimization problem.

min: f (x) (19)

    s.t. x∈D 

Defi nition 1: Global Minimizer and Global 
Minimum.

A point x*∈D satisfying f (x*) ≤ f (x) ∀x∈D 
is called a global minimizer of f over D. The 
corresponding value of f is called the global 
minimum of f over D.

Defi nition 2: Local Minimizer. 

A point x* ∈ D is called a local minimizer of f 
over D if there is an ε>0 such that
f(x*) ≤ f(x), ∀x∈N(x*, ε)D 

Theorem 2: Let f:D→R1 be convex and let 
D ⊂ Rn be non-empty, compact and convex.

Then every local minimum of f over D is also 
global.

Theorem 3: Let f:D→R1 be concave and let 
D ⊂ Rn be non-empty, compact and convex.

Then, the global minimum of f over D is 
attained at an extreme point. Some properties 
of the auction-based dispatch problem can be 
further exploited in order to design an effi cient 
algorithm [10–13]. For example, in the auction-
based dispatched problem, the objective function 
is quadratic and the constraint set contains only 
the liner constrains.

Defi nition 3: Quadratic Programming Problem

Global min f(x) = xTCx, s.t : x∈D

Where, D = { x ∈ Rn : Ax = b, x ≥ 0 } is a bounded 
polyhedron, C is an n×n
Symmetric matrix, A is an m×n matrix and 
b ∈ Rm.

If C is positive defi nite, it is a Positive Defi nite 
Quadratic Programming (PQP) problem; if C 
is negative defi nite, it is a Negative Defi nite 
Quadratic Programming (NQP)  problem; if C is 
indefi nite, it is Indefi nite Quadratic Programming 
(IQP) problem.  



14 The Journal of CPRI, Vol. 7, No. 1, March 2011

Theorem 4: The global optimal solution to the 
Indefi nite Quadratic Programming problem occurs 
on a boundary point of D, not necessarily vertex. 

3.2  Classical Economic Dispatch 
Algorithm

The classical economic dispatch algorithm relies 
heavily on the property of the production cost 
function: “the higher the output, the higher the 
incremental cost”. In this case, the objective funct-
ion is convex and quadratic [14–16]. To simplify 
the presentation, some test examples are given on 
the three-bus system as shown in Figure 1.

FIG. 1 A THREE-BUS TESTING SYSTEM

In this testing system, the generators have the 
capacity upper and lower limits as,  

P1min = 20 MW, P1max = 100 MW, P2min = 20 MW, 
P2max  = 100 MW.

[Example 1] 

In the testing system, suppose the cost functions 
of the generators are,

F1 = 2.5+0.25×P1+0.0014×P2 
1
 (20)

F2 = 5.0+0.18×P2+0.0018×P2 
2 (21)

which are convex functions.

Let PD = 100 MW. According to Theorem 1,

IC1 (P1) = IC2 (P2) (22) 

P1+P2 = PD  (23) 

The solution is P1=45.3 MW and P2=54.7 MW 
with the total cost of  36.93/h, which is the 
global minimal solution. 

3.3  Incapability of Classical Economic 
Dispatch Algorithm in Deregulated 
Power Systems

In a deregulated power system, the bidden cost 
function may no longer be convex. When the market 
strategy is considered, some of the seller’s bidden 
cost functions may become “the higher the output, 
the lower will be the incremental cost” which 
may make the auction-based dispatch problem an 
IQP problem [14–16], and the classical economic 
dispatch algorithm will become inapplicable. Even 
worse, if all the bidden cost function is concave, 
the problem becomes the suffi cient condition to 
maximize the total bidden cost, and the solution 
obtained from the classical economic dispatch 
algorithm will be the maximum global solution.

[Example 2] 

In the testing system in Figure 1 are suppose the 
bidden cost functions of the sellers are

F1=2.5+0.55×P1–0.0012×P2 
1 (24)

F2=5.0+0.58×P2 –0.0010×P2 
2 (25)

which are concave functions.

IC1 (P1) = IC2 (P2) (26)

P1 + P2 = PD (27) 

We have P1=38.64 MW and P2=61.36 MW with 
the total cost of  58.78/h, which is the global 
maximal solution. However, the global minimal 
solution is P1=80 MW and P2=20 MW with the 
total cost of  55.02/h.

3.4 Searching for Effi cient Algorithms

The K-T theorem is revised to solve the economic 
load dispatch problem under deregulation 
environment.

The key question is to deal with the sellers with 
the concave bidden cost function. One idea is 
to set contracted amount of the sellers with the 
lowest IC (Pmax) at its upper limit, but through 
perturbation analysis, it is impossible to proof 
that the solution obtained in this approach is the 
global optimum solution [14–16]. The following 
example illustrates the mistake of this idea.
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[Example 3] 

In the testing system, suppose the hidden cost 
function of the sellers to be 

F1=2.5+0.58×P1–0.0012× 2
1P  (28)

F2=5.0+0.55×P2–0.0010× 2
2P  (29)

which are concave. 

If PD=100 NW, IC1 (P1max)=0.34 and IC2 

(P2max)=0.35.

According to the “set the contracted amount of 
the seller with the lowest IC (Pmax) at its capacity 
upper limit”, the solution is P1=80 MW and 
P2 = 20 MW with the total cost of  56.82/h.

In fact, the global minimal solution is P2=20 MW 
and P2=80 MW with the cost of Rs. 56.22/h.

For the bidden cost function of the seller could 
be either convex or concave, the auction-based 
dispatch problem may become an IQP problem. 
Because of the computational diffi culty of 
the problem, so far only heuristics and some 
approximate alternatives have been developed. 
In the following test systems, the application of 
simulated annealing is proposed. 

4.0 SIMULATED ANNEALING-BASED 
ECONOMIC DISPATCH ALGORITHM 

One of the most important aspects of power system 
operation is to supply powers to the customers 
economically. Various optimizing techniques 
have been adopted for sharing the generated 
power in most economical manner. In the above 
methods, the fuel cost characteristics of a Thermal 
Generator [17–19] is usually approximated by 
(i) quadratic function; (ii) piecewise quadratic 
function; and (iii) polynominal functions of (ii) or 
(iii) are adopted. The economic dispatch problem 
may have several local optimum solutions with 
one being the global optimum solution. To fi nd 
the global or near global optimum solution, a 
more general method for solving the economic 
dispatch problem is needed. One of the methods 
is the simulated annealing method which is a 
very powerful technique and has the ability to 

fi nd the global or near global solutions for large 
combinatorial optimization problems.

4.1 Simulated Annealing Technique

The simulated annealing technique method takes 
the analogy between the physical annealing process 
of solids and the process of solving combinatorial 
optimization problems, such as the economic 
dispatch problem. In physical annealing, when 
a molten particle at a very high temperature is 
cooled slowly, the particle can reach the state of 
thermal equilibrium at each temperature. At any 
temperature T, the thermal equilibrium state is 
characterized by the Boltzmann probability factor 
(BPF), exp(–Ei/KBT), where Ei is the energy of the 
confi guration of the particle, KB is the Boltzmann’s 
constant and T is the temperature [17–19]. The 
probability of the particle having energy Ei, P (Ei) 
is given by 

i B
i

j B
j

exp( E / K T)P(E )
exp( E / K T)

−=
−∑

 (30)

where the summation term is the sum of BPFs of 
all the possible states that the particle can have at 
temperature T.

The denominator in Equation (30) suggests the 
examination of all possible states of the particle 
at temperature T. By checking the energy levels of 
the states of the particle against the previous 
state, the current state of the particle for 
the next temperature is found. The cooling 
process continues in the same manner until the 
temperature is suffi ciently low for the particle to 
become a solid.

4.2 Acceptance Criteria

The acceptance criteria for accepting a state of 
the particle within a number of trials consist of a 
deterministic criterion and a probabilistic criterion 
[21,22]. They are summarized below.

(i) The state with a lower energy level will be 
accepted.

(ii) The state with a higher energy level will be 
accepted in a limited way with a probability 
of acceptance, P(Δ). The expression of the 
probability of acceptance adopted is 
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P(Δ)=1/(1+exp(Δ/KBT)) (31)

where Δ is the increment in energy level between 
the current state of the particle and the state 
formed by a small random displacement of the 
current state.

Metropolis proposed that the acceptance of the new 
state with a higher energy level will be determined 
by comparing a random number generated from 
a uniform distribution on the interval between 
0 and 1 with the value of acceptance probability 
P(∆). If the random number is less than the value 
of P (∆), the new state is accepted as the current 
state.

4.2.1 Cooling Schedule

The rate of cooling in the annealing process can 
be controlled by a number of different schedules. 
The cooling schedule adopted here is 

Tk= r (k-1)×T1 (31a)

where k is the cooling step counter and r is 
a scaling factor less than 1. T1 is the initial 
temperature.

4.2.2 Application to Optimization Problems

As the concept of the temperature in physical 
annealing has no equivalent in the problem being 
optimized, the temperature can be taken as the 
control parameter. Moreover, the cooling step 
counter k in Equation (31) can be regarded as the 
iteration counter. With the above considerations, 
the control parameter σk=Tk and replacing KBT by 
σk we have 

P(Δ)=1/(1+exp(Δ/σk)) (32) 

4.2.3  Economic Dispatch Algorithm Based 
on Simulated Annealing

For the economic dispatch problem, the increment 
in energy level Δ in Equation (32) is equivalent to 
the increment in fuel cost by ΔFt, and hence the 
Equation (32) becomes

P(ΔFi)=1/(1+exp(ΔFi/σk)) (33) 

Consider the case where there are Ng sellers. 
Assume that the power loading of ‘Ng–1’ 
generators are specifi ed from the Equation (1). 
The power level of the remaining generator C, 
i.e. the dependent generator, is given by

gN
i 1r D i
i

P P P=
≠γ

= − ∑  (34)

The loading levels of all the generators are then 
taken as the starting values in the iterative solution 
process, provided that they satisfy the constraints 
on the operation limits of the generators. The 
generation of a neighborhood solution of power 
loading is then computed in an iterative manner.

4.2.4  Generation of a Neighborhood Solution

At any iteration ‘k’, let the solution of the power 
loadings of any Ng–1 generators be held in 
vector P. To fi nd a solution in the neighborhood 
of the loading in P, the amount of perturbation 
for each loading in P is fi rst found according to 
probability distribution function (PDF). In the 
present work, the Gaussian PDF is assumed and 
its standard deviation is set to the product of 
the control parameter σ and a scaling factor γ. 
This means that the probability of generating a 
perturbation of the amount in the range between 
–σγ and +σγ is 68.26 %.

Let the perturbations be stored in vector N. 
A solution in the neighborhood of the loading in 
P is then given by (P+N). The power loading of 
the dependent generator is calculated according 
to Equation (34). The complete set of power 
loading of the Ng generators generated is then a 
new solution in the neighborhood of the current 
solution. 

4.2.5  Initial Loading and Initial Control 
Parameter

While the values of generator loadings may be set 
arbitrarily at the beginning of the solution process 
in the simulated annealing-based algorithm, the 
initial settings of the loadings can be set on the 
basis that the generators share the total load 
demand in proportion to their ratings.

The initial value of the control parameter is usually 
set to a large value so that the neighborhood 
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solutions with higher costs can be accepted. 
Consequently, as the control parameter [22–25] 
is reduced gradually from this very high initial 
value, it is possible for the solution process to 
‘jump’ out of many local optimum points in 
seeking for the many local optimum solution. 
However, the control parameter value should not 
be too high, as many unfeasible solutions will be 
generated in a very large neighborhood space.

To determine the initial control parameter values, 
the probability of acceptance in Equation (19) 
can be approximated by a ratio X0, such that

X0=1/(1+exp(ΔC+/σ1)) (35)  

The ratio X0 is defi ned as the ratio of the number 
of accepted higher cost solutions to the total 
number of higher cost solutions generated. In the 
above equation, ΔC+ is the average increment in 
cost of higher cost solutions.

The value of X0   can be obtained numerically by 
performing its iteration according to the simulated 
annealing-based algorithm prior to the actual fi rst 
iteration. With the known value of X0, the value of 
the initial control parameter can then be estimated 
from 

σ1=|(ΔC+/ln(1/X0)–1) (36)

The fl owchart of the auction-based dispatch 
algorithm using simulated annealing is shown in 
Figure 2.

INPUT INITIAL LOADING

 CALCULATE CONTROL PARAMETER

SELECT DEPENDENT GENERATOR

CALCULATE NEW POWER LOADINGS

CHECK INEQUALITY CONSTRAINT

CALCULATE INCREMENTAL FUEL COST (∆F)

IS DF* =0?

NO

NO
REJECT

ACCEPT NEW CALCULATIONS
YES

YES

IB P(DF)* 
RAND(0,1)

FIG. 2   FLOWCHART OF THE AUCTION-BASED DISPATCH 
ALGORITHM USING SIMULATED ANNEALING

The proposed algorithm is summarized as:

(i) Select a set of initial power loading for 
the Ng generators such that the operational 
limits and generator-load balance constraints 
are satisfi ed. Initialize k to 1 and calculate 
the total fuel cost.

(ii) Calculate the control parameter using 
equation (31a).

(iii) For any iteration k and for a pre-specifi ed 
number of trials in the chain of neighborhood 
solution within the iteration, determine the 
best loading of all the generators in the 
neighborhood of the current loading setting 
by the following steps.

4.3 At Iteration ‘k’ and Trail ‘m’ 

(a) Select randomly a generator as a dependent 
generator. From the known current loadings 
of the generators, set dependent generator 
loading to Pr, and set the loading of the 
remaining (Ng–1) generators in P(k, m).  

(b) Generate vector N(k, m).

(c) From new power loading vector P, using 
(P(k, m)+N(k, m)).

(d) Using Equation (4.20), fi nd the new power 
loading, Pr of the dependent generator.

(e) If the power limits satisfy the operating limits 
in the inequality constraints, calculate the 
new total cost. Otherwise, discard the new 
power loading and return to step [iii(a)].

(f) Calculate the increment in total fuel cost ΔFt, 
by subtracting the cost associated with the 
new loading label.

(g) Check with the new power loading that can 
be accepted:

1. If (ΔFt≤0), the new power loadings are 
accepted as the current solution in the next 
trial as described by

P(k, m+1)=P(k, m)+N(k, m)  (37) 

     and 

Pr(k, m+1)=Pr (38)

2. If (ΔFt>0), and [P(ΔFt)>random (0,1)] then 



18 The Journal of CPRI, Vol. 7, No. 1, March 2011

P(k, m+1)=P(k, m)+N(k, m)  (39)

     and

Pr
(k, m+1)=Pr   (40)

otherwise 

P(k, m+1)=P(k, m)  (41)

     and

Pr
(k, m+1)=Pr (42)

3. If k is greater than the maximum number of 
iteration, stop. Otherwise, increment iteration 
counter k by 1 and go to step (2).

4. If (ΔFt≤0), the new power loadings are 
accepted as the current solution in the next 
trial as described by

P(k, m+1)=P(k, m)+N(k, m)       (43)

     and 

Pr
(k, m+1)=Pr (44)

5. If (ΔFt>0), and [P(ΔFt)> random (0,1)] then  
P(k,m+1)=P(k,m)+N(k,m)    and Pr

(k,m+1)=Pr, otherwise  
P(k,m+1)=P(k,m)  and Pr

(k,m+1)=Pr

6. If k is greater than the maximum number of 
iteration, stop. Otherwise, increment iteration 
counter k by 1 and go to step (2).

5.0 SIMULATION RESULTS

The proposed algorithm is applied to two different 
test cases and the results are compared with 
genetic algorithm methods also.

Case 1 
Considering a system containing a set of three 
generators in a simple six-bus power system, 
taking the values of unit generation Pi, a quadratic 
input–output curve data is obtained using the 
following equation for each generator.

Fi(Pi)=ci×Pi
2+bi×Pi+ai (45)

The cost/unit fuel is assumed to be the same for all 
units. The system load is 850 MW. The constraints 
for these equations and the unit operating ranges 
are given in Table 1.

TABLE 1
THREE SELLERS TESTING EXAMPLE

Unit 
Lower 
limit

(MW)

Upper 
limit

(MW)
ci bi ai

1 100 600 0.001562 7.92 561
2 100 400 0.00194 7.85 310
3   50 200 0.00482 7.97   78

The optimal dispatch result obtained from the 
proposed algorithm (Simulated Annealing) is 
given in Table 2 and compared with Genetic 
Algorithm (Table 3). In both the tables, results 
for fi ve different runs are presented as both are 
randomization algorithms.

TABLE 2
RESULT OF PROPOSED ALGORITHM 

(SIMULATED ANNEALING)
Unit 1
(MW)

Unit 2
(MW)

Unit 3
(MW) Cost/h

393.112 334.636 122.252 8194.4
393.112 334.636 122.252 8194.4
393.112 334.636 122.252 8194.4
393.112 334.636 122.252 8194.4
393.112 334.636 122.252 8194.4

TABLE 3
RESULT FROM GENETIC ALGORITHM [20]
Unit 1
(MW)

Unit 2
(MW)

Unit 3
(MW) Cost/h

393.17 334.604 122.226 8194.4
343.779 400 106.221 8207.7
433.181 366.819 50 8224.0
400 400 50 8227.9
350.086 299.914 200 8228.7

Case 2 
To test an example with concave functions, 
eight sellers with the same cost functions and 
capacity, upper and lower limits are used as shown 
in Table 4. 

TABLE 4
 EIGHT SELLERS TESTING EXAMPLE.

Unit
Lower 
limit

(MW)

Upper 
limit

(MW)
ci bi ai

i 20 100 –0.001562 7.92 100
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Table 5 shows the results for fi ve different runs. 
It is observed from this table that with different 
runs also the optimal cost is found to be the 
same. In the above example, the solution set has 
a good diversity in the searching space. Here the 
algorithms are implemented in MATLAB and 
tested in Pentium-4 machine. The computing time 
for case 1 is found to be less than 2 seconds and 
for case 2 is found to be 32 seconds.

6.0 DESIGN CRITERIA 

Design criteria of simulated annealing-based 
algorithm are discussed below.

A lot of fi ne-tuning was required in the algorithm. 
There was no available literature regarding the 
selection of the constants used in the algorithm 
namely ‘r’, ‘k’, ‘m’, ‘T’ and ‘γ’. Hence, the 
program was subjected to hundreds of test runs 
and selected the fi nal confi guration. 

The basic steps are outlined below.

(i) Selection of temperature ‘T’ and selection 
of ‘r’.

 The temperature T and scaling factor were 
chosen as were given in ref. [21]. The initial 
temperature was taken to be 50000 and was 
reduced in steps. The constants ‘r’ was to 
vary between 0.85 and 0.97. The best results 
were obtained for r = 0.95. 

(ii) Selection of scaling factor ‘γ’.

 The scaling factors were tested for values 
0.1 (case 1) and 0.01 (case 2) and found 
suitable.

(iii) Selection of ‘k’ and ‘m’.

 Selection of the number of iterations (k) 
and moves (m) was purely through trial and 
error method. Here, it is inferred that greater 
the randomness in the procedure, better 
will be the solution obtained. Hence, the 
number of moves were increased compared 
to the number of iterations. The decrease in 
temperature value depends upon the measure 
of ‘k’. The value of ‘k’ and ‘m’ for case 1 are 
100 and 20, respectively, whereas they are 
400 and 50, respectively, for case 2.

6.1 Advantages

The advantages of the proposed simulated 
annealing-based algorithm are summarized 
below.

(i) The solution process is independent of fuel 
cost characteristics function of generators.

(ii) Its convergence property is not affected by 
the inclusion of inequality constraints due to  
the operation limits of generators.

(iii) Exact dispatch solution to meet the 
load demand and transmission losses is 
guaranteed.

(iv) The necessity to evaluate Lagrange’s 
multiplier and penalty factors are avoided.

(v) Computer memory requirement is low.

6.2 Disadvantages

The main disadvantage of the proposed algorithm 
is that it has a higher computation time. However, 

where i = 1,2,…,8
the load = 450 MW

TABLE 5
RESULT OF PROPOSED ALGORITHM (8-SELLERS CASE)

Unit-1
(MW)

Unit-2
(MW)

Unit-3
(MW)

Unit-4
(MW)

Unit-5
(MW)

Unit-6
(MW)

Unit-7
(MW)

Unit-8
(MW)

Cost
(Rs/hr)

20 100 100 20 20 100 70 20 4307
20 100 100 20 20 100 20 70 4307
20 100 20 100 100 20 70 20 4307
20 100 20 20 100 100 70 20 4307

100 100 20 20 20 100 20 70 4307
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the speed of the algorithm can be greatly reduced 
by means of parallel processing. This can be 
achieved further by developing the present 
algorithm into a form suitable for execution in a 
multiprocessor system.

7.0 CONCLUSION

Deregulation leads the electricity industry to focus 
attention on the cost of generation and provides 
an incentive for generators to reduce their costs 
and minimize risks. The proposed algorithm 
combines the powerful searching mechanism 
of Simulated Annealing with the mathematical 
foundations for global optimization. It gives the 
auction-based dispatch problem effi ciently and 
accurately. The proposed algorithm can be easily 
extended to consider more constraints, such as the 
system loss and the spinning reserve constraints 
as well. This can be further explored for its 
suitability to be applied to solve the generation 
dispatch problem for a short-term hydrothermal 
generation scheduling, short-term multiple-fuel-
constrained generation scheduling, etc.
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