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forward since it requires detailed modelling of 
components. Further, in most of these studies the 
IEEE First-Benchmark System (FBS) [17] has 
been employed which involves interactions of 
many modes. With such a system it is not easy to 
demonstrate or understand the concept of modal-
interactions between the electrical and mechanical 
systems.

In an attempt to illustrate this complex pheno-
menon an example has been developed in this 
paper. In this example a simplifi ed generator 
model has been employed which acts as a 
media for exchange of energy between electrical 
and mechanical systems. The series-capacitor 
compensated transmission line is modeled as a 
series RLC circuit in a usual manner showing 
its natural frequency depending on the level 
of compensation. The mechanical system is 
designed in such a way that it possesses only one 
torsional mode. The modal equations are derived 
to facilitate easy choice of modal frequency. 

1.0 INTRODUCTION

In a stability constrained power system, where 
transmission system expansion is restricted due 
to limited right-of-way, compensation using 
Fixed Series Capacitors (FSC) has been the 
natural choice for improving the power transfer 
capability of transmission systems [1]. However, 
in such systems there is a possibility of adverse 
interaction between the generator-turbine 
mechanical system and the electrical network 
compensated with fi xed series capacitors - known 
as Sub synchronous Resonance (SSR) [2–6]. 
From the literature [7–12] it is clear that there 
has been a continued effort to understand the 
SSR phenomenon employing various techniques 
such as Eigen value analysis, frequency scanning 
and time-domain techniques and to investigate 
different countermeasures for mitigating the 
SSR effects. Extensive studies both on computer 
simulations and fi eld investigations [13–16] 
have shown that analysis of SSR is not straight 
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Each system is studied individually to clearly 
bring out their natural behavior and fi nally the 
systems are interconnected to demonstrate the 
mutual excitation of the systems depending on the 
level of compensation of the transmission system.  
It is felt that such an example not only introduces 
the diffi cult concept of SSR in powers system, but 
also motivates the graduate power engineering 
students to learn the more complicated IEEE 
FBS.

2.0 ANALYSIS OF SSR

The one line diagram of the system is shown in 
Figure 1. Here, a very simplifi ed model has been 
employed for the generator electrical circuit. In 
the fi gure = V–g< δg denotes the generator voltage 
where Vg is held constant at the specifi ed value 
and only δg is assumed to change as constrained 
by the mechanical system. The mechanical system 
is designed to have a single natural (torsional) 
frequency. 

FIG. 1  A SIMPLE POWER SYSTEM MODEL FOR SSR 
ANALYSIS.

2.1 Mechanical System

The mechanical system which consists of two 
rotor masses corresponding to the turbine and the 
generator is represented by a two mass-spring-
dashpot system as shown in Figure 2.

Using the standard notations [6], the equations 
of the two rotor-mass systems are summarized as 
follows:
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FIG. 2  MECHANICAL MODEL OF A ROTOR-SHAFT 
TORSIONAL SYSTEM WITH TWO MASSES.
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Writing the above equations only in terms of 
angles, i.e. δ = [δt δg]T, and fi nally in the matrix 
form, we get,

[M] p2δ + [D] pδ + [K]δ = Tm–Te=T         .... (3)
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To determine the modal (natural) frequency of 
the spring-mass system, a modal spring-mass 
model is developed employing the procedure 
suggested in [6]. A transformation matrix [Q] is 
obtained as the matrix of right eigen vectors of 
the matrix [M]-1[K], with each vector of [Q] be 
selected such that its element corresponding to 
the generator rotor is unity. Using this matrix, 
modal matrices are obtained such that they are 
diagonal. We have,

[M]m= [Q]T[M][Q]     and    [K]m=[Q]T[K][Q]

Where we have
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The radian frequency of the torsional mode is 
given by,

m
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Where, Ki
m and Mi

m denote ith diagonal elements of 
[Km] and [Mm] respectively. Therefore, the natural 
frequency of torsional mode of oscillation, fm, is 
given by
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2.2 Electrical System

The equivalent circuit for the electrical network 
of Figure 1 is shown in Figure 3. In the fi gure R 
and xL denotes the resistance and total inductive 
reactance of the circuit (including the generator), 
respectively. xC denotes the series capacitive 
reactance of the FSC.

FIG. 3  SERIES CAPACITOR COMPENSATED ELECTRI-
CAL NETWORK.

The resonance frequency, fer, of a series 
compensated transmission line is given by

C
er 0

L

xf f .... (6)
x

=

Where, f0 is the nominal system frequency.
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Since normally xC< xL, this implies that fer < f0, 
signifying that resonance phenomenon occurs at 
a frequency below the nominal frequency.

a
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Ca
a
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dt
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The differential equation for the electrical system 
for a-phase is written as
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The above equations are similarly written for 
other two phases.

2.3 Case Studies 

Case studies have been carried out with the 
following system parameters in per unit.

Mechanical system: Ktg = 41.88, Dtg = 0.8, 
Dt = 0.6, Dg = 0.9, Ht=0.72727, Hg=1.6.

Electrical network: R=0.002, xL=0.5 and xC = 
kcxL with kc= degree of compensation, f0=60 Hz.

The system is operated with Vg=1.0, Pg=1.0, 

E– b=1.0<0° - see Fig. 3. Neglecting mechanical 
damping and using (5) the torsional frequency is 
given by fm=20 Hz or 125.66 rad/s.

The SSR analysis has been carried in the following 
steps employing two values for kc:

1. Only electrical system.

2. Electrical system is interfaced to mechanical 
system without connecting mechanical 
variable to the electrical system in turn - 
partial interfacing.

3.  Interfacing electrical to mechanical system 
with mechanical variable connected to 
electrical system - complete interfacing.

2.3.1 Only Electrical System

To start with, the electrical system alone, see 
Figure 3, is analyzed using (7) and (8). The 
magnitude of the terminal voltage, Vg is assumed 
to be constant at the specifi ed value. Note that 
δg is held fi xed at the nominal value implying 
that the mechanical system dynamics are not 
considered. For kc= 0.45 and using (6), we get the 
resonance frequency of the electrical system as fer 
= 40.25 Hz. Without any disturbance the generator 
torque, Teg, is constant as shown in Figure 4. This 
corresponds to only power frequency component 
in generator currents.

Now, the system is perturbed by 0.01 p.u. step 
reduction in the infi nite bus voltage, initiated at 
t = 0.5s and lasting for 0.01s. This makes 
the generator current to possess a frequency 
component, fer = 40.25 Hz in addition to the 
power frequency. This leads to an oscillatory 
component of frequency, (f0–fer) = 19.75 
Hz, which is referred to as sub synchronous 
frequency, in torque. This is clearly seen in 
the fi gure with disturbance. It is to be noted 
that the generator torque is calculated as Teg=va 
ia+vbib+vcic.

FIG. 4  TEG PLOT WITH AND WITHOUT DISTURBANCE, 
XC = 0.45 XL.
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2.3.2 Partial Interfacing

In this case the electrical system is interfaced 
to mechanical system without interfacing the 
mechanical variable δg to the electrical system. 
This has been achieved with a confi guration as 
shown in Figure 5. The mechanical system is 
implemented using (1) and (2).

FIG. 5  CONFIGURATION TO STUDY EXCITATION OF 
TORSIONAL MODE: PARTIAL INTERACTION

In this system the following case studies are 
carried out:

Case-A: Here, for kc= 0.45, when the system is 
in steady-state, the electrical system is perturbed 
as mentioned above. Since the torque contains a 
component of frequency, (f0-fer) = 19.75 Hz, which 
is close to the torsional frequency, fm=20 Hz, the 
torsional mode is excited - see Figure 6. However, 
note that the oscillations are not sustained as the 
interfacing is only in one way.

FIG. 6  EXCITATION OF TORSIONAL MODE: PARTIAL 
INTERACTION FOR XC = 0.45 XL.

Case-B:  The above case study has been repeated 
with kc= 0.25, which results in fer= 30 Hz. Since 
frequency of the sub synchronous component 
in torque is (f0–fer) = 30 Hz, which is not in the 

vicinity of the torsional frequency, fm=20 Hz, the 
torsional mode does not get excited. This can be 
inferred from ωt plot in Figure 7.

FIG. 7  EXCITATION OF TORSIONAL MODE: PARTIAL 
INTERACTION FOR XC = 0.25 XL

2.3.2 Complete Interfacing

Having considered the partial interaction 
among the systems, in order to study the SSR 
phenomenon, the block diagram shown in Figure 8 
is considered in which the mechanical variable 
δg obtained from (2) is used in (9) of  electrical 
system.

FIG. 8  COMPLETE BLOCK DIAGRAM FOR SSR 
STUDY.

In this system the following tests are considered:

Case-I: With the system confi guration as in 
Figure 8, the parameters selected in Case-A are 
adopted. This excites the torsional mode and the 
rotor exhibits sustained oscillations at fm=20 Hz 
since now the interaction is both ways. The 
resulting oscillations in δg variable modulates the 
generator voltage at two dominant frequencies, 
one at (f0–fm) = 40 Hz and another at (f0+fm) = 80 
Hz [6]. This has been demonstrated in Figure 9 
by extracting the frequency components in va.
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FIG. 9  FFT OF VA WAVEFORM FOR XC = 0.45 XL WITH 10 
Hz AS THE BASE FOR FFT.

Since the sub synchronous frequency component 
in voltage is close to fer (= 40.25 Hz), it leads to a 
large sub synchronous currents in ia - see Figure 10. 
From the fi gure it can be seen that beyond 0.5s 
the ia waveform possesses other frequency 
components in addition to power frequency. This 
fact is further substantiated by determining the 
RMS value of the line current. Until 0.5s a constant 
RMS line current denotes only power frequency 
component in ia and beyond 0.5s the RMS current 
contains a dominant  frequency (f0-fer) = 19.75 Hz. 
This in turn produces sub synchronous torque 
component which will reinforce the rotor 
oscillations at frequency, fm. Such a cumulative 
process causes the coupled electromechanical 
system to experience oscillations of large 
magnitudes - see Figure 11.

FIG. 10  IA  AND IRMS WAVEFORMS FOR  XC = 0.45 XL.

In order to support the stability information 
obtained from the time-domain simulation, an 
Eigen value analysis is carried out by line-arising 

the equations in synchronous reference frame [6]. 
The state vector is chosen as x = [vcD, vcQ, iD, iQ, 
δg, δt, ωg, ωt]T. The results are tabulated in Table 1. 
From the table, it is seen that as the network sub-
synchronous frequency is close to the torsional 
mode, the torsional mode gets destabilized due 
to interaction.

FIG. 11  TORSIONAL INTERACTION STUDY FOR 
XC = 0.45 XL

TABLE 1
EIGENVALUES FOR CASE-I, xC = 0.45 xL 

Eigen values Comments
–0.7539 ± j 629.83 Super synchronous mode
–5.8357 ± j 124.52 Sub-synchronous mode
  4.4840 ± j 124.54 Torsional mode
–0.1492 ± j 16.912 Swing mode

Case-II: In this case, the parameters selected 
in Case-B are adopted. The corresponding 
Eigen values are tabulated in Table 2. Here, 
since frequency of the sub synchronous torque 
component, 187.7/(2π) = 29.87 Hz, is not in 

TABLE 2
EIGENVALUES FOR CASE-I, xC = 0.25 xL 

Eigen values Comments
–0.7538 ± j 565.41 Super synchronous mode
–0.7615 ± j 187.70 Sub-synchronous mode
–0.5821 ± j 126.28 Torsional mode
–0.1573 ± j 14.157 Swing mode
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the vicinity of the torsional frequency, 126.28/
(2π) = 20.09 Hz, the torsional interaction is not 
sustained. Therefore, the system remains stable as 
predicted by the Eigen values. These predictions 
are validated by the time-domain simulation as 
shown in Figure 12.

FIG. 12  TORSIONAL INTERACTION STUDY FOR 
XC = 0.25 XL

The above tutorial example illustrates the 
following important concepts:

Occurrence of SSR in an electromechanical  
system denotes a state where electrical 
systems exchange energy with the mechanical 
systems through the synchronously revolving 
rotor systems.

Torsional frequencies are generally in the sub- 
synchronous frequency range. Depending 
on the degree of line compensation the sub-
synchronous torque components may or may 
not excite a particular torsional mode. Thus, 
SSR is a discrete event. Each torsional mode 
gets tuned only for a certain level of series 
compensation.

Since the magnitude of the disturbance chosen  
is small, the super-synchronous frequency 
component in the torque is not excited 
appreciably and it damps out quickly. 

The example considers only the torsional  
interaction effects. In general, SSR is 
triggered due to the combined effects of 
torsional interaction and induction generator 
effects.

It is not easy to identify a torsional mode  
from the time-domain plot of speed signals. 
For example, in Figure 11 the speed signal 
is dominated with two modes: torsional and 
swing mode. This task of identifying a mode 
is much more complex if the mechanical 
system offers a range of torsional frequencies 
as in the IEEE FBS. In such cases an 
evaluation of modal speeds from the actual 
speed variations offers a way to identify a 
mode [16].

3.0 CONCLUSIONS

1) In this paper a simple example is discussed 
which illustrates the various procedural 
aspects involved in SSR analysis.

2) The example presented clearly brings out 
the interactions between the electrical and 
mechanical systems through a systematic 
study of individual systems. 

3) It is felt that this paper will be of great help 
to introduce SSR related issues to graduate 
students without much modelling details and 
motivates them to take up advanced studies 
with respect to the IEEE FBS where many 
intricate modal interaction exists.
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