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1.0 INTRODUCTION

The reduction of an interconnected passive 
network at a port of access (say, at a terminal-
pair) to an ‘equivalent’ impedance or admittance 
(in the most general sense of these terms) is a 
conceptually fundamental task in circuit theory, 
and has received more than a century of detailed 
and meticulous attention from earnest inquirers 
in this field. The outcome of such inquiries is 
copious and rich in details, insofar as the reduction 
of topological (interconnection-originated) 
relationships resident in any given network is 
concerned.

Now then, circuit theory also provides for a 
second type of relationship that could exist within 
and between topological blocks, to wit – that due 
to sharing a common physical neighbourhood. 
One instance of such a relationship has its 
origins in magnetic proximity.In circuit theory, 
this behavioural aspect is attributed exclusively 
to inductors and is quantified as a measure of the 
extent of such a proximity-originated ‘coupling’ 
between inductors, via the agency of ‘mutual’ 
inductance. This appellation stems from the fact 
that such a relationship that is based on magnetic 
proximity must evidently be a mutual one. This 
proximal relationship exists regardless of the 
manner of electrical interconnection; indeed, it 
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manifests itself completely independent of any 
topological binding whatsoever.Any general 
and meaningful approach towards network 
reduction must therefore contend with this duo 
of relationships – topological and proximal – in a 
conjoint and comprehensive fashion.

Whereas the treatment of topological reduction 
has received a fulsome treatment by several 
authors over several decades, it is indeed 
baffling to the assiduous inquirer who is met 
with a near total paucity of adequate literature 
concerning the problem of network reduction 
involving proximal coupling. This conceptually 
fundamental topic appears to be strangely and 
summarily neglected so as to leave a pedagogical 
lacuna of glaring dimensions.  A systematic 
survey of classic and contemporary authorities 
[1-41] bears ample testimony to the truth of this 
observation.  Analytical treatment has been, by 
and large,ubiquitously limited to the trivial case 
of two coupled inductors in series arrangement. 
Some attempts at network reduction beyond the 
above ubiquitous case may be summarized as 
follows:

1. The case of two coupled inductors in parallel 
appears in references [1-5]. However, it is 
relegated in a decidedly indifferent manner 
to chapter-end exercises in [3-5]. References 
[1-2] offer an ad-hoc and cumbersome 
approach which is not amenable for extension 
to a higher number of coupled elements.

2. Reference [1] deals with the case of two 
coupled R-L branches in parallel in a rigid 
and somewhat straitlaced treatment, which 
is incapable of facile extension and is limited 
in scope to the sinusoidal steady state. 

3. Reference [2] deals with the case of three 
coupled inductors in series by an approach 
of an ‘effective’ inductance, which could be 
misleading and is exceedingly inconvenient 
from the point of view of generalization.

The rest of the surveyed works [6-41] devote no 
more attention to this problem than a cursory 
mention the trivial case. Given the fundamental 
nature of the problem, it is disheartening and 

perplexing to countenance this near absence of 
adequate treatment concerning thereto.

This paper attempts to supply this need by 
advancing a simple and general approach towards 
network reduction, which is capable of treating the 
twin relationships – topological and proximal – in 
an efficiently overlaid fashion by the employment 
of the primitive impedance (or admittance) 
matrices and adroit, yet simple,mathematical 
manipulations thereupon. The developed method 
is eminently scalable to any size, and with suitable 
modifications, to any general network topology.

2.0 ANALYTICAL DEVELOPMENT 

The two-terminal networks are characterized 
by their terminal variables – namely, voltages 
and currents expressed as functions of time. 
It will be convenient to retain this time-
domain representation of the terminal variables 
and to interrelate these via suitable rational 
functions. This approach obviates the need 
for domain transformations and also prevents 
the modelling from being restricted to a very 
specific set of operating conditions. To achieve 
this generalization, use is made of the Heaviside 
differential operator given by

P   ...(1)

Employment of this operator ensures the retention 
of the parent domain (viz. time t ) of the variables 
of interest, while simultaneously facilitating 
the algebraic manipulation of the underlying 
differential equations.

The terminal variables – such as voltage Vk (t) and 
current ik (t) hall be denoted plainly as Vk and ik 
hereinafter unless otherwise specified.

2.1  The Primitive Network
A set of nL proximally coupled two-terminal 
networks is shown in Figure 1. 

These networks are topologically unconnected but 
possess coupling due to magnetic proximity. This 
state of existence of the nL networks is referred 
to as ‘primitive’ [42-43]. The performance 
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equation of this set of networks may be written 
as mathematically coupled differential-algebraic 
equations using the terminal voltages and 
currents. This description is called as the primitive 
description of the set of networks and may be 
expressed in either the operational impedance 
form

FIG. 1 PRIMITIVE DISPOSITION OF nL PROXIMALLY 
COUPLED TWO-TERMINAL NETWORKS

  ...(2)
or in the operational admittance form 

  ...(3)

where  and 

are nLx1 column vectors and 

Zp

is the nLxnL primitive impedance matrix of the 
given set of nL coupled two-terminal networks. 
The diagonal elements Zk,k of this matrix are the 
‘self’ impedances of the networks whereas the off-
diagonal elements Zk,j(k≠j), are the impedances 
‘mutual’ to networks k and j, which characterize 
the extent of coupling between elements k and j 
due to magnetic proximity. It may be noted that 
for all k and j, 

That is, Zp is a symmetric matrix.

All the elements of the matrix Zp areopen-circuit 
impedances; this matrix reduces to a diagonal 
form, if none of the Zp networks were to be 
magnetically coupled. All the elements of Zp 
are,in general, rational functions of the operator p. 

The matrix Yp=[Zp]-1 is the primitive admittance 
matrix, obtained either by inversion of Zp or by 
direct measurement as the short-circuit admittance 
matrix.This is also a symmetric matrix. The 
elements of Yp are likewise rational polynomials.

2.2 Conditions Imposed by Topology

When the constituent units comprising the 
primitive network are subject to interconnection 
in a specific manner, an additional set of 
relationships would be brought to bear upon the 
terminal variables  and  These topological 
relationships impose an overlay of constraints 
over and above the ‘primitive’ ones, that is, 
over those due to proximal coupling. In any 
given ‘interconnected’ situation, therefore, it is 
necessary to consider the two sets of relationships 
in conjoint fashion. As a preparatory step in this 
process, the primitive matrices Zp and Yp  might be 
required to undergo a modification or adjustment 
to correctly account for the (possibly) altered 
disposition of the senses of the terminal variables 
from those of the primitive network. This leads to 
the formulation of the altered primitive matrices 
Z and Y, these being obtained from the ‘reported’ 
primitive matrices Zp and Yp merely via necessary 
changes effected in the sign of the off-diagonal 
elements. With these changes, the modified 
primitive relationships may be expressed, for a 
given topology, in impedance form, as

  ...(4)
and, in admittance form, as

  ....(5)

In the development that follows, matrices Z and Y 
are taken to mean the suitably adjusted versions of 
the matrices Zp and Yp. This process is illustrated 
later on with number-imposed examples.

This manner of overlaying (or superimposing) 
the topological constraints upon the 
primitive relationships governing the coupled 
networks isexplained belowwith reference to 
someelementary – butby no means trivial – 
interconnections.
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2.3 Series Connection of nL Coupled 
Networks and Determination of the 
Equivalent Impedance Thereof

The nL coupled networks are shown connected 
in series in Figure 2. The terminal voltage and 
current for the series combination are vt and it. 
The equivalent impedance  of the series 
combination is sought.

FIG. 2 SERIES CONNECTION OF nL PROXIMALLY 
COUPLED TWO-TERMINAL NETWORKS

The topological conditions imposed upon the 
terminal variables  and  are

Introducing an  nLx1  column vector whose 
elements are all unity, that is,

The series connection conditions may be more 
concisely expressed as

  ...(6)

Premultiplying (4) by  and applying (6) 
thereon, one obtains

  ...(7)

Equation (7) is of the form vt=Zeqit where Zeq is the 
equivalent impedance of this series combination, 
leading to

Zeq=  ...(8)

It is evident that the triple vector-matrix product  
 is a scalar quantity and is simply the sum 

of all the elements of the adjusted primitive 
matrix Z, thus simplifying the process of network 

reduction to a simple summation of the matrix 
elements. It may also be noted that this expression 
for equivalent impedance is equally valid under 
conditions of absence of coupling as well: in 
such a case, the summation is that of only the 
diagonal elements, the off-diagonal elements of 
Z then being null.

A useful corollary of the above result is the 
expression for the voltage vk across the kth two-
terminal network:

 ...(9)

where  is the kth column which is also the 
transpose of the kth row) of Z. The equations 
(8) and (9) summarize the results of this series 
connection. It may also be observed that the 
simple case of the uncoupled condition is now 
expressible as a special (and the most elementary) 
case of the above results.

2.4 Parallel Connection of nL oupled 
Networks and Determination of the 
Equivalent Impedance There of

FIG. 3    PARALLEL CONNECTION OF nL 
PROXIMALLY COUPLED TWO-TERMINAL 
NETWORKS

The nL coupled networks are shown connected 
in parallel in Figure 3. The terminal voltage and 
current for the parallel combination are vt and it. 
The equivalent impedance  of the parallel 
combination is sought.
The topological conditions imposed upon 
the terminal variables  and  by this parallel 
connection are
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which, in a more concise fashion, may be 
expressed as

  ...(10)

The admittance form is better suited in this case 
for simplification. Premultiplying (5) by  and 
applying (10) thereon, one obtains

  ...(11)

Equation (11) is of the form it=Yeqvt, where Yeq 

is the equivalent admittance of this parallel 
combination, and thus

  ...(12)

Here too, it is manifest that the triple vector-
matrix product  is a scalar quantity and is 
simply the sum of all the elements of the adjusted 
primitive matrix Y, thus simplifying the process of 
network reduction to a simple summation of the 
matrix elements. The equivalent impedance Zeq of 
the parallel combination may then be written as 

  ...(13)

A useful corollary of the result contained 
in (12) is the expression for the current 
ik through the kth two-terminal network:

  ...(14)

where nL is the kth column (which is also the 
transpose of the kth row) of Y. The equations 
(12), (13), and (14) summarize the results of 
thisparallel connection.It may also be observed 
that the simple case of the uncoupled condition 
is now expressible as a special (and the most 
elementary) case of the above results.

2.5 Specific Particularization of the General 
Results to a Group of nL Coupled Inductors 
and the Definition of Levitance

A set of nL proximally coupled inductors is shown 
in Figure 4. 

FIG. 4    PRIMITIVE DISPOSITION OF nL PROXIMALLY 
COUPLED INDUCTORS

The state of affairs is similar to that shown in 
Figure 1 and detailed in §2.1.

Formulating, therefore, on similar lines, the 
terminal variables of these inductors are related 
as

  ...(15)

or, in the inverted form, as

  ...(16)

In (15) and (16),  and  are the terminal voltage 
and current vectors, and 

Lp

is the nLxnL inductance matrix which is real, 
symmetric, and positive definite. The subscript P   
denotes the primitive nature of the characterization, 
Further,

is the inverse of the inductance matrix. Each 
element of this Tp matrix has the dimensions 
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of reciprocal inductance. It may be noted that a 
‘single-dot’ convention is used in Figure 4, which 
conveniently harmonizes with the terminal-current 
senses and the specified entries in the primitive 
inductance matrix. This is in concordance with the 
spirit of the highly edifying observation ventured 
in this regard by Guillemin [9].

In order to avoid a possible conflation with the 
scalar ‘reciprocal of inductance’, and also since 
no specific name has been accorded in literature 
to this particular quantity, the authors deem fit to 
coin a term to negotiate this piquant situation. The 
term ‘Levitance’ (etymologically from ‘levity’ as 
contrasted with ‘gravity’) has been used here by 
the authors to denominate a quantity such as tk,j 
which is any element of tp. It may be noted that, 
for a single isolated inductor of inductance value 
Lk, the levitance Tk becomes merely the reciprocal 
of Lk. Thus Tp may be christened as the‘levitance 
matrix’ of the group of nL coupled inductors 
shown in Figure 4.

Considerations of the constraints brought about 
by any given interconnection will require the 
matrix Lp (and consequently Tp ) to be updated 
via suitable modifications effected in the sign 
of its off-diagonal elements in much the same 
manner as detailed for Zp in §2.2. This results 
in the formulation of the altered inductance 
matrix, which now reflects the necessary changes 
effected in the sign of its off-diagonal elements 
to incorporate the (possibly) changed senses of 
the terminal currents for the given topological 
configuration. These updated relationships may 
be expressed as 

  ...(17)

and in the inverted form as

  ...(18)

2.6 Series Connection of nL Coupled 
Inductors and Determination of the 
Equivalent Inductance Thereof

The nL coupled inductors are shown connected in 
series in Figure 5.

FIG. 5   SERIES CONNECTION OF nL PROXIMALLY 
COUPLED INDUCTORS

The terminal voltage and current for the series 
combination are vt and it. The equivalent inductance 
Leq of this series combination is sought.

The topological conditions imposed by the series 
connection are those given by (6). Premultiplying 
(17) by  and applying (6) thereon, one obtains

  ...(19)

Equation (19) is of the form vt=Leqpit, where 
Leq is the equivalent inductance of the series 
combination, and thus

  ...(20)

is the equivalent inductance of the series 
combination of the nL coupled inductors, which is 
obtained by a direct summation of all the elements 
of the adjusted inductance matrix L.

Further, the voltage across the kth inductor may 
be given as

  ...(21)

where   is the kth columnwhich is also the 
transpose of the  kth row) of L. The equations 
(20) and (21) summarize the results of this series 
connection. It may also be observed that the 
simple case of the uncoupled condition is now 
expressible as a special (and the most elementary) 
case of the above results.
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2.7 Parallel Connection of nL Coupled 
Inductors and Determination of the Equivalent 
Inductance Thereof

The nL coupled inductors are shown connected 
in parallel in Figure 6. The terminal voltage and 
current for the series combination are vt and it 
The equivalent inductance Leq of this parallel 
combination is sought.

The topological conditions imposed by the 
parallel connection are those given by (10). 
Premultiplying (18) by  and applying (10) 

thereon, one obtains

  ...(22)

Equation (22) is of the form , where  
 is the equivalent levitance of the series 

combination, and thus

  ...(23)

FIG. 6    PARALLEL CONNECTION OF nL PROXIMALLY 
COUPLED INDUCTORS

The equivalent inductance Leq of the parallel 
combination may then be written as

  ...(24)
Further, the current through the kth inductor may 
be given as

  ...(25)

where  is the kth column which is also the 
transpose of the kth row) of T. The equations 
(23), (24), and (25) summarize the results of 
thisparallel connection. It may also be observed 
that the simple case of the uncoupled condition 
is now expressible as a special (and the most 
elementary) case of the above results.

2.8 Specific Particularization of the General 
Results to a Group of nL Coupled R-L 
Branches 

This specific configuration of the two-terminal 
network comprises of a series combination of a 
resistance Rk and an inductance Lk,k such that 

P  ...(26)

and

 P; k ≠ j   ...(27)

for all k=1.2.... nL. Thus the relevant adjusted 
primitive impedance matrix is

Z=R + L p  ...(28)

where R=diag[R1,R2,... RnL]

and  the admittance counterpart is

Y = Z-1 = [R+L p]-1  ...(29)
2.8 Series Connection of nL Coupled  R-L 
Branches

Using (28) and applying the result (6) of the 
general case thereon, one readily obtains

  ...(30)
that is

P ...(31)

as the equivalent impedance of the series 
combination of  nL coupled R-L branches, with Req= 
R and Leq respectively as the equivalent resistance 
and inductance of this series combination. Here 
again, it may be observed that the simple case of 
the uncoupled condition is now expressible as 
a special (and the most elementary) case of the 
above results.

2.9 Parallel Connection of nL Coupled  R-L 
Branches
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Using (29) and applying the result (12) of the 
general case thereon, one readily obtains

  ...(32)

as the equivalent admittance (in operational form) 
of this parallel combination. This result appears 
as a rational function of the operator P even 
when the parameter matrices R and L have been 
number-specified. If it be desired to demonstrate 
the method with fully numerical results, a 
sinusoidal steady-state (for which, p≡jω), could 
be chosen as the operating state of the system, 
for this purpose of demonstration. Under such a 
state of affairs, the impedance matrix Z becomes 
complex-number-valued as in

  ...(33)

Thus the corresponding admittance matrix (also 
complex number-valued) takes the form

  ...(34)

Using (34) and applying the result (10) of the 
general case thereon, one obtains

  ...(35)

as the equivalent phasor-domain admittance of 
this parallel combination, and 

  ...(36)
as the equivalent phasor-domain impedance of the 
parallel combination of nL coupled R-L branches.

3.0  NUMERICAL EXAMPLES – 
INDUCTOR NETWORKS  

In this section examples involving proximally 
coupled inductors in series, parallel, and series-
parallel combination will be considered. The 
results obtained in §2.6 and §2.7 will be put to 
use. The first two examples correspond to the 
elementary and ubiquitous case of two coupled 
inductors in series, and are mentioned here 
for the dual purpose of cataloguing and for 

demonstrating the use of the proposed method 
for well-known cases.The next two examples 
tackle two-inductor parallel combinations, which 
latter are less frequently encountered in literature. 
The remaining examples deal with combinations 
involving three or more inductors in series, 
parallel, and series-parallel, for which literary 
instances are almost non-existent.

3.1 Two-Inductor Combinations

The primitive arrangement of two coupled 
inductors is shown in Figure 7.

The primitive inductance matrix for this pair of 
inductors is given to be L

FIG. 7    PRIMITIVE DISPOSITION OF TWO COUPLED 
INDUCTORS (EXAMPLES 1-4)

3.1.1 Example 1: Two Inductors in Series – 
Ubiquitous Configuration 1

This connection is shown in Figure 8. This case 
corresponds to the first of the two ubiquitous 
examples to be found in literature. 

In this case, the primitive inductance matrix needs 
no modification; thus, L=Lp.

The equivalent inductance of this series 
combination is given by

FIG. 8    EXAMPLE 1:  TWO COUPLED INDUCTORS IN 
SERIES – UBIQUITOUS CONFIGURATION 1
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3.1.2  Example 2: Two Inductors in Series – 
Ubiquitous Configuration 2

The connection is shown in Figure 9. This case 
corresponds to the second of the two ubiquitous 
examples to be found in literature.

FIG. 9    EXAMPLE 2:  TWO COUPLED INDUCTORS IN 
SERIES – UBIQUITOUS CONFIGURATION 2

The adjusted inductance matrix for this case is 

Lp

The equivalent inductance of this series 
combination is given by

3.1.3  Example 3: Two Inductors in Parallel 
– Configuration 1
This connection is shown in Figure 10.

In this case, the primitive inductance matrix needs 
no modification; thus L=Lp

The levitance matrix is therefrom obtained as 

The equivalent levitance of the parallel 
combination is then given by

whence, 

FIG. 10  EXAMPLE 3:  TWO COUPLED 
INDUCTORS IN PARALLEL – 
CONFIGURATION 1

3.1.4 Example 4: Two Inductors in Parallel – 
Configuration 2

This connection is shown in Figure 11.

The adjusted inductance matrix for this case is 

L

The levitance matrix is therefrom obtained as

FIG. 11  EXAMPLE 4:  TWO COUPLED INDUCTORS IN 
PARALLEL – CONFIGURATION 2

The equivalent levitance of the parallel 
combination is then given by

whence, 

3.2. Three-Inductor Combinations

The primitive arrangement of three coupled 
inductors is shown in Figure 12.
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FIG. 12   PRIMITIVE DISPOSITION OF THREE 
COUPLED INDUCTORS (EXAMPLES 5-11)

The primitive inductance matrix for this group of 
inductors is reported to be

Lp 

3.2.1 Example 5: Three Inductors in Series – 
Configuration 1

This connection is shown in Figure 13.

FIG.13   EXAMPLE 5:  THREE COUPLED INDUCTORS 
IN SERIES – CONFIGURATION 1

In this case, the primitive inductance matrix needs 
no modification; thus L=Lp

The equivalent inductance of this series 
combination is given by

3.2.2 Example 6: Three Inductors in Series – 
Configuration 2

This connection is shown in Figure 14.

FIG. 14 EXAMPLE 6:  THREE COUPLED INDUCTORS IN 
SERIES – CONFIGURATION 2

The adjusted inductance matrix for this case is

L

The equivalent inductance of this series 
combination is given by

3.2.3 Example 7: Three Inductors in Series – 
Configuration 3

This connection is shown in Figure 15.

FIG. 15  EXAMPLE 7:  THREE COUPLED INDUCTORS 
IN SERIES – CONFIGURATION 3

The adjusted inductance matrix for this case is 

L

The equivalent inductance of this series 
combination is given by

3.2.4 Example 8: Three Inductors in Parallel– 
Configuration 1

This connection is shown in Figure 16.

FIG. 16   EXAMPLE 8:  THREE COUPLED INDUCTORS 
IN PARALLEL – CONFIGURATION 1
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In this case, the primitive inductance matrix needs 
no modification; thus, L=Lp

The levitance matrix is there from obtained as

The equivalent levitance of the parallel 
combination is then given by

whence,

3.2.5  Example 9: Three Inductors in 
Parallel– Configuration 2

This connection is shown in Figure 17.

FIG. 17  EXAMPLE 9:  THREE COUPLED INDUCTORS 
IN PARALLEL – CONFIGURATION 2

The adjusted inductance matrix for this case is

L 

The levitance matrix is therefrom obtained as

The equivalent levitance of the parallel 
combination is then given by

whence,

3.2.6 Example 10: Three Inductors in 
Parallel– Configuration 3

This connection is shown in Figure 18.

FIG. 18 EXAMPLE 10:  THREE COUPLED INDUCTORS 
IN PARALLEL – CONFIGURATION 3

The adjusted inductance matrix is

L 

The levitance matrix is therefrom obtained as

The equivalent levitance of the parallel 
combination is then given by

whence,

3.2.7 Example 11: Three Inductors in a Mixed 
Series-Parallel Configuration 

This connection is shown in Figure 19.

The adjusted inductance matrix for this case is

L 

The two inductors L2,2 and L3,3 in parallel must 
first be reduced to a single equivalent and then be 
joined in series to L1,1.



784 The Journal of CPRI, Vol. 12, No. 4, December 2016

FIG. 19  EXAMPLE 11:  THREE COUPLED INDUCTORS 
IN A MIXED SERIES/PARALLEL CONNECTION

The levitance matrix for the three inductors as a 
primitive group is first obtained as

This levitance matrix provides the means of 
performing the parallel reduction of the 2nd and 3rd 
inductors as follows: the 2x2 diagonal submatrix 
corresponding to the 2nd and 3rd inductors is 
reduced to a scalar via a simple summation of the 
elements thereof, followed by reducing the off-
diagonal 1x2 submatrices being reduced likewise. 
This process results in a 2x2 matrix being 
formed by the retention of the original T1,1 and 
the incorporationof the newly obtained reduced 
elements as

That is

This 2x2 matrix is now inverted to obtain a reduced 
inductance matrix to facilitate series reduction of 
the combination:

Whence, the equivalent inductance of this 
combination is

3.3 Four-Inductor Combinations

The primitive arrangement of four coupled 
inductors is shown in Figure 20.

FIG. 20  PRIMITIVE DISPOSITION OF FOUR COUPLED 
INDUCTORS (EXAMPLES 12-17)

The primitive inductance matrix for this group of 
inductors is reported to be

LP

3.3.1 Example 12: Four Inductors in Series – 
Configuration 1

This connection is shown in Figure 21.

In this case, the primitive inductance matrix needs 
no modification; thus, L=Lp

FIG. 21. EXAMPLE 12:  FOUR COUPLED INDUCTORS 
IN SERIES – CONFIGURATION 1

The equivalent inductance of this series 
combination is given by
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3.3.2 Example 13: Four Inductors in Series – 
Configuration 2

This connection is shown in Figure 21.

FIG. 22  EXAMPLE 13:  FOUR COUPLED INDUCTORS 
IN SERIES – CONFIGURATION 2

The adjusted inductance matrix for this case is

L

The equivalent inductance of this series 
combination is given by

3.3.3 Example 14: Four Inductors in Series – 
Configuration 3
This connection is shown in Figure 23.

FIG. 23  EXAMPLE 14:  FOUR COUPLED INDUCTORS 
IN SERIES – CONFIGURATION 3

The adjusted inductance matrix for this case is

The equivalent inductance of this series 
combination is given by

3.3.4 Example 15: Four Inductors in Parallel 
– Configuration 1

This connection is shown in Figure 24.

FIG. 24 EXAMPLE 15:  FOUR COUPLED INDUCTORS IN 
PARALLEL  – CONFIGURATION 1

In this case, the primitive inductance matrix needs 
no modification; thus,L=Lp

The levitance matrix is therefrom obtained as

The equivalent levitance of the parallel 
combination is then given by

whence,

3.3.5 Example 16: Four Inductors in Parallel 
– Configuration 2

This connection is shown in Figure 25.
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FIG. 25 EXAMPLE 16:  FOUR COUPLED INDUCTORS IN 
PARALLEL  – CONFIGURATION 2

The adjusted inductance matrix for this case is

L 

The levitance matrix is therefrom obtained as

The equivalent levitance of the parallel 
combination is then given by

whence,

3.3.6 Example 17: Four Inductors in Parallel 
– Configuration 3

This connection is shown in Figure 26. The 
adjusted inductance matrix for this case is

L= 

The levitance matrix is therefrom obtained as

=

The equivalent levitance of the parallel 
combination is then given by

FIG. 26  EXAMPLE 17:  FOUR COUPLED INDUCTORS 
IN PARALLEL  – CONFIGURATION 3

whence,

4.0 NUMERICAL EXAMPLES – R-L 
NETWORKS

In this section examples involving proximally 
coupled R-L branches in parallel combination 
will be considered. The results obtained in 
§2.8 will be put to use. The computation of 
the equivalent phasor-domain impedance will 
be demonstrated. The treatment of the series 
combination of such branches has already been 
discussed in its entire generality in §2.8.1, and, as 
shown therein, happens to be merely an extension 
of that for the series combination of inductors – 
thus occasioningno additional attention hereafter.

4.1 Example 18: Parallel Combination of 
two R-L Branches

The primitive disposition of two proximally 
coupled R-L branches is shown in Figure 27.

FIG. 27 PRIMITIVE DISPOSITION OF TWO  COUPLED 
R-L BRANCHES
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The phasor-domain primitive impedance matrix 
of this pair of R-L branches, evaluated at a 50 Hz 
(ω=100π rad/s) sinusoidal steady-state is reported 
to be

where  RP 
Consider next the parallel combination of these 
two R-L branches as shown in Figure 28. 

FIG. 28   EXAMPLE 18: TWO COUPLED  R-L 
BRANCHES IN PARALLEL (PHASOR-DOMAIN 

)

The adjusted impedance matrix for this case is 

The admittance matrix is therefrom obtained 
as . The equivalent phasor-domain 
admittance of the parallel combination is then 
obtained as

whence, the equivalent phasor-domain impedance 
of this parallel combination is

4.2 Example 19: Parallel Combination of 
three R-L Branches
The primitive disposition of three proximally 
coupled R-L branches is shown in Figure 29.

FIG. 29 PRIMITIVE DISPOSITION OF THREE  COUPLED 
R-L BRANCHES

The phasor-domain primitive impedance matrix 
of this group of R-L branches, evaluated at a 
50 Hz (ω=100π rad/s) sinusoidal steady-state is 
reported to be

p = R = jXp 

where R = diag   and

Consider next the parallel combination of these 
three R-L branches as shown in Figure 30.

The adjusted impedance matrix for this case is           

= R+ j X

where R = diag ,  and

X = π  

FIG. 30 EXAMPLE 19: THREE COUPLED R-L 
BRANCHES IN PARALLEL (PHASOR-DOMAIN  

)
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The admittance matrix is therefrom obtained 
as  The equivalent phasor-domain 
admittance of the parallel combination is then 
obtained as

whence, the equivalent phasor-domain impedance 
of this parallel combination is

4.3 Example 20: Parallel Combination of 
Four R-L Branches

The primitive disposition of four proximally 
coupled R-L branches is shown in Figure 31.

The phasor-domain primitive impedance matrix 
of this group of R-L branches, evaluated at a 
50 Hz (ω=100π rad/s) sinusoidal steady-state is 
reported to be

P= R + jXp

where R = diag ,  and

FIG. 31 PRIMITIVE DISPOSITION OF FOUR  COUPLED 
R-L BRANCHES

XP = π 

Consider next the parallel combination of these 
four R-L branches as shown in Figure 32.

FIG. 32 EXAMPLE 20: FOUR COUPLED R-L BRANCHES 
IN PARALLEL  (PHASOR-DOMAIN  )

The adjusted impedance matrix for this case is            
= R+ j X where R = diag 

,  and

The admittance matrix is therefrom obtained 
as  The equivalent phasor-domain 
admittance of the parallel combination is then 
obtained as

whence, the equivalent phasor-domain impedance 
of this parallel combination is

5.0  CONCLUSIONS

A simple, general, elegant, and scalable method 
for obtaining of the equivalent impedance (or 
admittance) of series and parallel configurations 
of proximally coupled two-terminal networks 
has been presented. This method has been amply 
illustrated by twenty examples of series, parallel, 
and series-parallel configurations of inductors and 
inductor-resistor combinations. The method is 
based on the usage of the primitive impedance (or 
admittance) matrices and is easily generalizable 
to networks of any size. The task of obtaining 
the series (or parallel) equivalent impedance 
(or admittance) is thus reduced, generalized, 
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and simplified to a straightforward process 
of addition of the elements of the appropriate 
primitive matrix. The presented method has 
been demonstrated to accommodate, as a special 
(and most elementary) instance, the case of the 
reduction of networks sans proximal coupling. 
The elegance and scalability of the presented 
method stems almost entirely from the vector-
matrix formulation of the performance equations 
of the primitive network and by retention of the 
time-domain in these equations facilitated by the 
Heaviside differential operator.

This method could be suitably adapted with 
minimal modifications to tackle more general 
block-level topologies as well as to other forms of 
reduction. A companion paper, which iscurrently 
in manuscript preparation stage, proposes to deal 
more comprehensively with the above details.
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