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Abstract
An Optimal State Feedback Controller (OSFC) based on linear Quadratic Regulator (LQR) concept, is applied for simultaneous 
coordinated designing of the Power System Stabilizer (PSS) and Thyristor Controlled Series Capacitor (TCSC) as a damping 
controller in the Single Machine Infinite Bus (SMIB) power system. The performance of the proposed controllers is applied 
for nominal loading conditions. The eigen value analysis demonstrates the high performance of the proposed controllers 
and their ability to provide efficient damping of Low Frequency Oscillations (LFO’s). The performance of the proposed 
controllers with LQR has an excellent capability in damping LFO’s and enhance the dynamic stability of the system.
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1. Introduction 
The Electrical Power Systems (EPS) have become 
complex due to long transmission lines, placing of large 
synchronous machines, heavy loading and environment 
etc. For small disturbances there is effect on power 
flow during loading conditions. As a result, local mode 
oscillations shows the poor damping in the absence of 
stabilizer. In SMIB system only local oscillations are 
present. The stabilizer may provide sufficient damping to 
the critical modes and the oscillations are minimized.

Usually, PSS is placed to the exciter of synchronous 
machine to provide additional control action1,2. In some 
cases PSS not provide sufficient damping to the local 
oscillations in complex systems. Recent advances in power 
electronics introduce the use of Flexible Ac Transmission 
Systems (FACTS) controllers in power systems3. Flexible 
AC Transmission Systems (FACTS) damping stabilizers 
have to provide sufficient damping to the critical modes 
and the dynamic stability of the system is enhanced4. 

Because of fast control action of FACTS based stabilizer 
and PSS are capable to provide high stability to the EPS. 
Dynamic interactions are present for uncoordinated 
design of PSS and FACTS based damping stabilizer in 
complex systems. To prevent such possible interactions a 
coordinated control of PSS and FACTS may be needed. 
But, in EPS the coordinated combination also complex 
because of order of system matrix dimensions. 

Various types of FACTS controllers have been applied 
to power systems like Static synchronous compensator 
(STATCOM), Series Static Synchronous Compensator 
(SSSC), and Unified power flow controller (UPFC), etc. 
These controllers are based on GTO-and IGBT-based 
voltage source converters5–8. TCSC is a series FACTS 
device is presented by vary the reactance of the line 
through the firing angle and to provide sufficient damping 
to the critical modes9–11. Subsequently, by using the series 
FACTS POD controllers with PSS has been demonstrated 
that variable series compensation is highly effective to 
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control active power flow in the lines and in improving 
the damping of LFOs in a very fast manner12,13. 

In the design of conventional control techniques, PI 
controller is implemented to damp the LFOs in EPS. To 
reach steady state response more time needed with this 
conventional controller14. For sudden disturbances the 
design of adaptive controllers is less sensitive for parameter 
variations15. The mathematical model of intelligent 
controllers is not suited for parameter variations and 
sudden disturbances15. To overcome these limitations, 
alternate optimal state feedback controllers are needed. 
The design of state feedback controller based on LQR 
is more sensitive for parameter variations for sudden 
disturbances. The proposed LQR controller effectively 
damp the LFOs for sudden disturbances. The optimal 
gains of the LQR controller shift the critical modes to the 
left half of the s-plane results the settling time is reduced. 
The performance of the system is further improved by 
OSFC to the coordinated control of PSS and TCSC. The 
optimal control law based on the cost function. With the 
OSFC the eigenvalues are shifted to the left half of S-plane 
and improves the damping significantly. 

The structure of the paper is as follows: Section II 
presents the power system model, Section III presents 
the general configuration models of the proposed PSS, 
TCSC and OSFC applied to the SMIB power system. 
Section IV presents the results and discussion analysis 
for proposed PSS, TCSC and OSFC joined with designed 
damping controller have been discussed. Finally, Specific 
important conclusions are summarized in Section V.

2. Power System Model
The Differential Algebraic Equations of EPS as follows16
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When a PSS and TCSC are placed to the system, 
the state variables belong to these controllers will be 
added to the system matrix.  
SMIB System is a simplified classical model of the 
synchronous generator is shown in Fig. 1.17-18. 1V  is 
the generator terminal voltage, 2V  is the infinite bus 
voltage and the reactance of the transmission is eX ,   
respectively. The generator and external data is 
given in Appendix.18 
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Figure 1. SMIB system configuration.
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where,  the lead is time constant and  is the lag time 
constant. The input signal to the PSS is  i.e. deviation 
in speed from synchronous speed and the output of PSS is 
the supplementary signal .  is added to  and 

 to the exciter, so as to damp the LFO in a network. So, 
test system Eigen-values will be increased by one.18

3.2 TCSC Damping Controller
A speed input single-stage TCSC controller has been 
applied to the SMIB system as shown in Fig 3. TCSC 
configuration consists of a bidirectional thyristor T1 and 
T2, bypass inductor L and fixed series capacitor bank C. 
In stability studies the TCSC can be represented by an 
equivalent reactance XTCSC. By proper variation of firing 
angle (α) of the thyristors, the value of XTCSC is adjusted 
automatically to regulate the specific quantity of power 
flow through the transmission line19. 

 
TCSC

TCSCTCSC
TCSC X

TT
X ∆−∆−=∆
• 11 α

 (7)  

The transfer function model of TCSC controller is 
shown in Figure 4. It’s composed of a gain block with gain 
KT, a signal washout block, and a phase compensation 
block as shown in Figure 4. These blocks do for a similar 
function as in PSS. 

In the damping controller the normalized speed 
deviation i.e. mω∆ is the input signal and the deviation in 
thyristor conduction angle σ∆ is that the output of the 
proposed TCSC controller. The value of reactance 
included within the network is calculated by applying 
firing angle of thyristors respectively.  σ∆ =0, under 
steady-state conditions and the ( )0TCSCeEFF XXX α−=

, is the effective line reactance of the transmission line[2].
Where ( )α−= TCSCeEFF XXX , in dynamic conditions. 
Where α is the firing angle of the thyristors respectively.2

3.3 Optimmal State Feedback Control
The optimal controller based on the state feedback control 
law20. This state feedback control law is developed based 
on the design of cost function. The OSFC has been broadly 
investigated from the precedent four decades20. The OSFC 
design problem is the formulation of the cost function and 
the elite of the state and control weighting matrices. The 
optimal gains of the system move the system states to left half 
of s-plane. The principal objective of OSFC is to accomplish 
the network highest damping efficiency and regulate the 
system stability. The proposed optimal controller algorithm 
for COC of SVeC and PSS solves a succession of constrained 
nonlinear optimization so that, critical Eigen-values of the 
unstable and lower damped modes are transferred to the 
conic region. The method is based on trial and error and 
does not offer a systematic way of choosing positive semi 
- definite matrix (Q) and positive definite matrix (R). The 
OSFC block diagram representation as given in Figure 5.

Figure 2. Simplified block diagram for proposed PSS

Figure 3. SMIB system with TCSC

Figure 4.  Simplified block diagram for proposed TCSC 
controller

Figure 5.  Block diagram representation of Optimal state 
feedback controller
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Optimal control vector is represented in the form of K 
matrix (K is state feedback gain matrix) 

 )t(x.K)t(u −=  (8)

So minimize the performance index

 0

TT dt)RuuQxx(J
 (9)

where, Q is state weighting matrix and R is control 
weighting matrix. Optimal control matrix K is 

 P.E.RK T1−=  (10)

Solve the Riccati equation for matrix P

 P ;0QP.E.R.PEPAPA T1T
 (11)

4. Results and Discussions
A MATLAB/ Simulink program for the test system 
without control, with TCSC and OSFC control for COC 
of TCSC and PSS at nominal load condition has been 
carried out.

Table 1 lists the Eigen-values of test system 
without control, total 4 Eigen-values are present at 
nominal operating condition. In the total 4 Eigen-
values, 4 are complex conjugate.  In Table-1, without 
damping controller, the important dominant mode is 
(-0.0300±j7.7617) and has the DR of 0.0039 and therefore 
this mode has been referred to as critical swing mode. 
This DR can be improved by adding PSS to the network. 
So, the critical swing mode shifted to a most desirable 
position in the s plane.

Table 1. Eigen-values of test system without control

Mode Without Control
Damping Ratio 
(𝜻) 

Frequency
(rad/sec)

Λ1,2 -2.6852±j15.3260 0.1733 15.600
Λ3.4 -0.0300±j7.7617 0.0039 7.76

The second column of Table 2 lists the Eigen-values of 
test system with PSS. Total 5 eigenvalues are present. Four 
are complex conjugate and one is real value. The critical 
mode moves to (-0.3792 ± j7.55571) and has the DR of 
0.0501, respectively. Now the DR is improved to 0.0426.  The 
DR further improved by placing the TCSC in the system.

Table 2. Eigen-values of test system with PSS

Mode Without Control
Damping Ratio 
(𝜻) 

Frequency
(rad/sec)

Λ1,2 -2.1215± j15.4873 0.1360 15.6
Λ3.4 -0.3792±j7.55571 0.0501 7.57
Λ5 -10.4290 1.0 10.42

Table 3 presents the eigenvalues of the test system with 
TCSC. Total 6 eigenvalues are present with TCSC. In 6 Eigen 
values, 4 are complex conjugate and remain are real values. 
With TCSC, the critical mode shifted to (-0.9712±j4.6285) 
and has the DR of 0.205, respectively at 50% compensation. 
The DR with TCSC is improved to 0.1549. The DR has been 
further improved by LQR optimal controller.

Table 3. Eigen-values of test system with TCSC

Mode Without Control
Damping Ratio 
(𝜻) 

Frequency
(rad/sec)

Λ1,2 -3.2065± j16.077 0.196 16.4
Λ3.4 -0.9712±j4.6285 0.205 4.73
Λ5 -17.7874 1.0 17.7874
Λ6 -0.0400 1.0 0.0400

Figure 6.  Flow Chart for the design of OSFC
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Table 4 lists the Eigen-values of test system LQR 
optimal controller. Total 6 Eigen-values are present in 
the total 6 Eigen-values, 4 are complex conjugate and 2 
are real values. The critical mode shifted to (-0.9738 ±  
j 3.6278) and has the DR of  0.2590 . The DR has been 
improved by 0.054 with LQR optimal control. 

K= [-0.0000   -0.0000   0.0385   -0.0000    0.0007       0;

         0.0000   0.0000   -0.0168    0.0000   -0.0004       0]

Table 4. Eigen-values of test system for COC of TCSC 
and PSS with OSFC

Mode OSFC control
Damping 
Ratio (𝜻) 

Frequency
(rad/sec)

Λ1, 2 -3.4066  ±  j 16.077 0.207 16.5000
Λ3,4 -0.9738 ±  j 3.6278 0.2590 3.76
Λ5 -0.0450 1 0.0450
Λ6 -17.7882 1 17.788

It is observed that the TCSC and PSS with OSFC can 
simultaneously improving the damping of the test system 
compared to the no control, PSS and TCSC. 

The eigenvalues of the SMIB bus at nominal load with 
different controllers are presented in Figure 7. The Eigen 
values are more shifted to left of the S-plane with LQR 
control compared to other and without controllers. The 
settling is reduced with LQR controller. 

The rotor angle deviations for without and with 
different controllers are plotted in Figure 8. It has 
been found that the oscillations damp faster with the 
application of LQR controller compared to that of other 
controllers. In view of these results, it may be concluded 
that LQR controller has lesser settling time and peak 
overshoot compared to TCSC, PSS and without control in 
damping the oscillations.

5. Conclusion
In this paper an approach for COC of TCSC and PSS with 
OSFC for power oscillation damping has been proposed. 
The approach is verified by means of Eigen-value analysis 
at nominal load. The Eigen-value analysis results at 
without control, with PSS, with TCSC and COC of SVeC 
and PSS with OSFC are compared. The results obtained 
for a SMIB test system demonstrate the applicability of 
the controller and its ability to damp LFO at nominal 
loading condition. It can be concluded that the proposed 
COC of SVeC and PSS with OSFC has better in damping 
LFO in keeping dynamic stability. Our future research 
would be developing COC of TCSC and PSS with OSFC 
to damp the LFO at different loading conditions.
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Appendix
TCSC: 

Conduction angle= 0.8727; XTCSC= 0.7044;

dXTCSC= 10.4013; XT= 1.6494; KTCSC=10.0;

KP=4.0;T1=0.5;T2=0.1;TTCSC=25; XL=0.0049pu;

XC=0.0284 pu ;TTCSC=17ms

SMIB SYSTEM:

H=2.37s; D=0.0; KA=400; Rs=0.0pu; Re=0.02pu;

Td=5.90s; TA=0.2s; Ws=314 rad/sec; Xd=1.70pu;

Xd’=0.245pu; Xe=0.7pu; Xq=1.64pu; Vinf=1.00<00;

Vt=1.72<19.310

PSS:

KPSS=10; T1PSS=0.4; T2PSS=0.15
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