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1. Introduction
The migration of industries to Industry 4.0 involves 
rapid deployment of Operational Technology (OT) and 
Information Technology (IT) convergence for smarter, 
faster, more cost-efficient, and better monitoring and 
control. Especially in the energy sector, the conventional 
power grid is changing into a smart grid for monitoring 
and control purposes from remote locations, which 
makes the grid more susceptible to cyberattacks. Due to 
the integration of OT and IT networks, the attack surface 
of the smart grid is growing significantly. Even though 
industries with firewalls and high-security passwords 
handle many security measures. There is always a pitfall 
whenever bidirectional communication is involved in the 
control system through the internet for remote control 
operations. The attackers might exploit the system’s 
vulnerability through social engineering due to careless 

personnel passwords, bad practices of default or guessable 
passwords to all substation equipment, bypassing the 
controls with the turned-off security measures, and 
inadequate technology1. Therefore, the smart grid is 
becoming increasingly susceptible to cyber attack, which 
impose immediate danger to the nation’s mission-critical 
infrastructure.

One of the earliest cyber-attacks on the power grids 
was the Aurora Generator Test in 2007, carried out as an 
experiment by the US Department of Energy. In this Attack, 
they targeted the control systems of a 2MW diesel generator. 
As a result, the generator started shaking and smoking, 
which caused physical damage2. In 2010, Stuxnet malware 
targeted a nuclear facility in Iran. It aims to take control 
and damage the facility’s Industrial Control System (ICS) to 
impede the nuclear enrichment process. It was the first and 
most sophisticated malware used to target industrial control 
systems. There is also a possibility of targeting the whole 
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grid infrastructure rather than only individual components. 
Suppose the attackers can intrude on the control centres 
for power grid monitoring and control. In this case, the 
attacker can maliciously inject false data injection attacks to 
disconnect transmission lines, generators, substations, and 
other power system components.

The smart grid system is at risk from false data injection 
assaults since these attacks include manipulating and 
altering parameters such as current, voltage, phase angles, 
and sequence components. The intention is to deceive the 
operator without triggering any alarms. It can potentially 
cause a series of failures in the smart grid, ultimately leading 
to a complete loss of electricity in the system3. The impact 
creates catastrophic daily activities where the people depend 
on electricity. The power outages in Ukraine that happened 
in 2015 and 2016 back-to-back year incidents are proof of 
cyberattacks on the power grid. The attackers targeted the 
distribution system by taking unauthorized control of the 
ICS. These cyberattacks result in power outages, affecting 
hundreds of thousands of customers4. Mumbai, a major 
Indian city, lost electricity for about 12 hours on October 12, 
20205. According to a recent study, “RedEcho,” a proactive 
hacker team, was connected to the power outage. The 
hackers used sophisticated malware to specifically target a 
regional control centre in a protracted assault that lasted for 
many months6. Therefore, protecting power systems from 
cyber threats has become a rapidly evolving and crucial field 
of study7.

Signature-based IDS (firewalls) cannot capture advanced 
cyber-attacks and require frequent updating. Specification-
based IDS, such as state estimation techniques, require 
more system expertise, complex logic, resource-intensive, 
and scalability issues. These challenges have motivated 
researchers to prefer Machine Learning techniques to 
provide defence-in-depth solutions with generalization and 
scalability8.

The proposed work aims to provide a comprehensive 
and adaptable solution for the smart grid when the system 
is threatened by an attacker or intruder, whether from inside 
or outside the system. The key contributions of this study are 
outlined below:
•	 The proposed framework of Statistical Approach with a 

Machine Learning classifier (SAML-PCA) with SMOTE 
aims to improve early cyberattack discrimination in the 
smart grid with optimal hyperparameterized tuning 
of Principal Component Analysis with ExtraTrees 
and AdaBoost Classifier for Feature Extraction 
(Dimensionality Reduction), bagging, and boosting, 
respectively.

•	 The missing rate handled for the relay’s apparent 
impedance with INFinity saw Attack records as Zero to 
avoid blackouts and cascading failures.

•	 SMOTE is applied to balance the dataset for model 
robustness and higher accuracy.
The content of this paper is divided into seven sections: 

Section 2 explores the existing research work on Triple 
Class classification with the techniques used, limitations, 
and the drawbacks to be addressed. Section 3 specifies an 
overview of the system architecture, dataset description, and 
recommended framework with the process flow diagram. 
Section 4 outlines the methodology of the statistical 
approach with Principal Component Analysis (PCA) for 
extracting the top k principal components of features and 
the steps involved. Section 5 describes the implementation 
detail of data preparation, the tools used for implementation, 
and the metrics used to evaluate the results. Section 6 
provides a comprehensive examination and discussion of the 
results, including tables and graphs. Section 7 analyses the 
result and outlines the potential areas for further research.

2. Related Work
Some recent researchers have contributed to solving the 
cyberattack problem in smart grid systems. The techniques 
and limitations of the existing approach, as well as the 
challenges to be addressed, are discussed in this section.

Hink et al.9 developed the initial datasets specifically 
emphasizing instances where a compromised system or 
insider attack targets a smart grid. The team analyzed power 
system interruptions using machine learning methodologies 
to distinguish cyberattacks from other causes. The dataset 
offered by this author’s group provides the initial evidence for 
doing machine learning application research in Smart Grid 
to create an Intrusion Detection System (IDS). An inherent 
limitation of this article is its analysis of a mere 1% of 
randomly chosen data items from a comprehensive collection 
of 15 datasets of Triple Class. Using the Information Gain 
metric, the top 40 optimal features were selected and used 
to classify the Triple Class. They achieved 95.0% accuracy 
with the Adaboost + JRipper machine learning classifier. The 
authors propose evaluating future work possibilities using 
extensive power system data, machine learning algorithms, 
classification methodologies, and different quantities of 
labelled data.

Ankitdeshpandey and Karthi10 used Principal 
Component Analysis (PCA) as a feature extraction technique 
for extracting features to decrease the number of dimensions 
to 31 Principal components for the Triple Class dataset. They 
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Figure 1 of the system architecture13 consists of 
various operational scenarios of Single Line to Ground, 
Line Maintenance, Remote Tripping Command Injection 
Attack, Relay Setting Change Attack, and False Data 
Injection Attack. The Phasor Measurement Unit (PMU) 
device synchronizes with a shared time source to calculate 
a phasor quantity’s magnitude and phase angle of voltage 
or current. Each of the four PMU/relays is equipped with 
an integrated system that measures 29 features per PMU, 
which consists of 116 feature columns with 12 columns of 
control panel logs, snort alerts, relay logs, and the marker/
target column. The complete description of the features 
dataset is available in13.

3.2 ICS CyberAttack Power System Dataset
The ICS Cyber Attack Power System Dataset13, accessible 
to the public, was developed in 2014 with a collaboration 
between Mississippi State University and Oak Ridge 
National Laboratory (US). 

The SAML-PCA evaluates 15 combined Triple Class 
datasets to discriminate Cyberattacks from Natural Events 
and No Events. Each dataset contains around 5000 records 
with 128 feature columns and one marker/target label for 
classification. Table 1 depicts the 41 event scenarios split into 
Triple Class events of No Events, Natural Events, and Attack 
Events from the Multiclass label and Binary Class Label of 
the IEEE 3 Bus System13. 
•	 No Events - refers to the standard functioning of the 

system without any changes in the loads.
•	 Natural Events - refers to a system involving a Single 

Line-to-Ground (SLG) failure with different fault 

applied various Machine Learning (ML) and Deep Learning 
(DL) algorithms. Finally, they achieved 91.14% accuracy 
with the Random Forest classifier. The paper’s shortcoming 
lies in its testing methodology, which only included a limited 
sample size of around 13,200 samples. These samples were 
randomly selected from a total of 15 datasets. 

Sunku Mohan et al.11 applied the power domain 
knowledge to select the features manually. They have 
chosen the 36 potential impact features of +ve, -ve, and 
zero sequence components, log features to discriminate 
cyberattacks from natural events and normal events with 
various load variations. A Rule-based Machine Learning 
classifier (Random Forest) was used to discriminate 
the Triple Class, achieving an accuracy of 97.25%. The 
limitation of this study is that the manual selection of 
features is primarily tailored to a specific architecture, 
leading to an Intrusion Detection System (IDS), which is 
partly defined despite using a machine learning classifier 
for classification.

The overall drawback of the existing work is that the feature 
selection is not accurate enough to discriminate the cyberattack. 
Manual Feature selection is not feasible to address the problem 
of different architectures. Moreover, handling of the missing 
rate with the INFinity seen attack records of the apparent 
impedance of the relay is not specified. So, these challenges are 
addressed in our proposed framework of SAML-PCA.

3. System Architecture

3.1 Power System Framework
The power system framework configuration of the 3 bus/2 
generator system was developed by authors12 and shown 
in Figure 113. The assumptions are based on the premise 
that an unauthorized individual has successfully breached 
the system, gained entry to the substation network, and 
sent instructions to the substation switch. The invader 
may originate from an external entity outside the network, 
a former employee of the organization, or a current 
employee. Due to the absence of an internal validation 
mechanism in IEDs (Intelligent Electronic Devices) to 
differentiate between authentic and deceptive faults, they 
use a distance protection approach to activate the breakers 
upon detecting defects. To perform maintenance, the 
operators can manually deactivate the breakers BR1 
through BR4 by issuing commands to the Intelligent 
Electronic Devices (IEDs) R1 through R4. The manual 
override is typically carried out during line maintenance 
or when other system components malfunction.

Figure 1. The power system framework configuration 
(3-Bus/2-generator System)13.
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locations in L1 and L2 and Line Maintenance in both L1 
and L2.

•	 Attack Events - refer to three types of attacks: Data 
Injection Attacks (SLG fault replay), Remote Tripping 
Command Injection Attacks, and Relay Setting Change 
Attacks. These attacks include manipulating fault 
locations with different percentages.

dominating others due to their scale. The label encoder is 
applied to the marker/target column to convert categorical 
data into numerical values to help facilitate the conversion, 
and this is then followed by dimensionality reduction 
(feature extraction) using PCA (principal component 
analysis). During the model selection and parameter tuning 
stage, PCA extracts features optimally. 

Figure 2. The proposed framework of the SAML-PCA 
process flow diagram to discriminate cyberattacks from 
natural and no events.

Table 1. SAML-PCA with event scenario split for 
triple class

Types of Scenarios Multiclass 
Labels

Binary 
Class

Triple 
Class 

Normal Operation 41 Normal No  
Events

Single Line-to- Ground Fault 1 to 6 Natural 
Events

Line Maintenance 13, 14

False Data Injection Attack 7 to 12 Attack Attack 
Events

Remote Tripping 
Command Injection Attack

15 to 20

Relay Setting Change 
Attack

21 to 30, 35 
to 40

3.3  Proposed SAML-PCA Framework for 
IDS in Smart Grid

The proposed framework of the SAML-PCA approach, 
illustrated with the process flow diagram shown in 
Figure 2, is aimed at discriminating Cyber Attacks from 
Natural Events and No Events. This framework involves 
carrying out data wrangling pre-processing methods by 
considering “INFinity” attack observations as Zero for the 
feature columns of “PA: Z” (Apparent Impedance for Four 
Relays). The feature engineering method encompasses 
many steps, including SMOTE / Without SMOTE, train-
test split, feature scaling, label encoding, and applying 
without PCA / PCA by Optimal Hyperparameter tuning 
with ML Classifier.

The proposed framework considers four possible 
combinations of without/with SMOTE and PCA for the 
performance comparison. Using stratified sampling, SMOTE 
equalizes the dataset by ensuring an equivalent number 
of records for the three class labels. Following the use of 
SMOTE, the dataset is divided into training and testing 
sets using an 80:20 ratio by the Pareto Principle. Feature 
Scaling using a Standard Scaler with Z-Score Normalization 
is applied to trained sets to standardize the ranges, making 
them comparable and preventing certain features from 
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GridSerachCV finds the optimal ‘N’ Component 
hyperparameter tuning for each ML Classifier used. 
GridSerachCV exhaustively searches for the best parameters 
from the provided grid parameters. The ML Classifiers 
applied for training and testing the datasets are ExtraTrees 
with Adaboost Classifier (ET + AdB), Random Forest 
(RF), and Decision Tree (DT)14. The Model Evaluation 
Stage initializes the PCA and ML models with the best 
hyperparameter to evaluate the test data. The detection stage 
performs the discrimination of Cyberattacks from Natural 
Events and No Events to achieve better performance metrics 
of higher accuracy and less execution time.

4. Methodology

4.1 Principal Component Analysis
PCA10 is a dimensionality reduction (feature extraction) 
technique of statistical approach that can be employed 
to handle multivariate features of power system data for 
attack detection. The curse of dimensionality refers to the 
phenomenon where an exponential rise in the number of 
features (dimensions) leads to a proportional increase in the 
quantity of data needed to achieve correct generalization 
with accuracy. High-dimensional data can lead to 
overfitting and increased computational complexity in 
the power system datasets of the ‘N’ bus system. It often 
contains correlated or redundant features. PCA identifies 
the principal components, which are uncorrelated and 
capture the maximum variance in the data. Removing 
redundant information can lead to more straightforward 
and interpretable models with improved generalization 
performance.

PCA helps address the curse of dimensionality by reducing 
the number of features into components while retaining most of 
the variability in the data. Reducing the number of features 
with PCA makes the training process faster, so the model 
can be trained faster with fewer computation resources.

PCA projects the matrix into a linear space of lower 
dimensionality. The process converts a group of variables 
associated with each other into a new set of variables with no 
correlation, referred to as principal components. 

The major components are arranged in a decreasing 
order based on their variance, thereby collecting the most 
essential information from the top k components. 

4.2 Steps Involved
The steps involved in the dimensionality reduction of 
power system feature columns are shown below:

Step 1: Standardization
Before using PCA, the data undergoes standardization 

using Standard Scalar with Z-score Normalization. This 
involves subtracting the mean and dividing it by the standard 
deviation for each feature. It guarantees that every feature 
makes an equal contribution to the analysis.

Step 2: Covariance Matrix Calculation
The covariance matrix contributes to understanding 

how different features in the data are related. The covariance 
between the two features Xi and Xj is given in (1).

C
n

X X X Xij ki i
k

n

kj j�
�

� �
�
�1

1 1

( )( )  (1)

Here, Xi  and X j  are the means of variables Xi and 
Xj, respectively. Where, k represents the index of each 
observation in the dataset.

Step 3: Eigenvalue Decomposition
Following this, the eigenvectors and eigenvalues of 

the covariance matrix are determined. The eigenvectors 
correspond to the principal components or directions, while 
the eigenvalues indicate the extent of variation along those 
directions. The relationship between the eigenvector v and 
eigenvalues λ described in (2).

The equation for eigen decomposition is :

 Cv = λv (2)

The eigenvectors are typically normalized to unit 
length, and the eigenvalues are sorted in descending 
order.

Step 4: Selection of Principal Components
Sorting the eigenvectors in a decreasing order 

depending on their associated eigenvalues. The eigenvector 
corresponding to the largest eigenvalue represents the 
primary principal component, the eigenvector associated 
with the second largest eigenvalue represents the secondary 
principal component, and so on. A higher eigenvalue 
indicates that the related main component captures a greater 
amount of variation. The process of selecting the top k 
eigenvectors, also known as principal components, involves 
choosing the k eigenvectors with the highest eigenvalues. 
These eigenvectors are then used to create the transformation 
matrix P.

Step 5: Projection for Dimensionality Reduction
The original data is then projected into a new subspace 

with the top k eigenvectors (principal components). The 
transformation of a data point  to the new subspace is given 
in (3). 
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 Projected Data = PTx (3)

where, PT is the transpose of the transformation 
matrix P.

In summary, PCA involves standardizing the data, 
computing the covariance matrix, and finding the 
eigenvectors and eigenvalues. Sorting, creating a projection 
matrix, and finally, projecting the data onto the new 
subspace. The resulting transformed data retains the essential 
information while reducing dimensionality.

5. Implementation Detail
The SAML-PCA approach is implemented to discriminate 
between three types of events: No Events, Natural Events, 
and Attack Events.

Table 2. SAML-PCA before and after SMOTE records with the train-test split from the merged 15 datasets 

Dataset  Used IEEE 3 Bus System13

Feature EngineeringAspect Without SMOTE (Original Dataset- Imbalanced) With SMOTE (Balanced Dataset)
Event Types No Events 

records
Natural 

Events records
Attack 
records

Total Records No Events 
records

Natural 
Events records

Attack 
records

Total 
Records

Training Samples (1) 3524 14647 44530 62701 44530 44530 44530 133590
Testing Samples (2) 881 3662 11133 15676 11133 11133 11132 33398
No. of records (1+2) 4405 18309 55663 78377 55663 55663 55662 166988

Table 2 depicts the before and after SMOTE operation 
with an 80:20 ratio train-test split with the merged 15 
datasets of Triple Class for training and testing purposes.

5.1  Implementation Tool and Evaluation 
Metrics

The free and open-source Google Colab Data Analytics 
platform is used for the implementation. The system 
employs Python 3 on Google Compute Engine, with a RAM 
capacity of 13 GB, a 2-core Xeon CPU running at 2.20 GHz, 
and a 108 GB hard drive. The key metrics used for evaluating 
the performance of the proposed SAML-PCA model are 
accuracy (4), precision (5), recall (6), and F1-score (7). These 
metrics are determined using the generic representation of 
the confusion matrix15, as shown in Table 3.

Table 3. Confusion Matrix
No. of testing samples (N 

records)
Predicted class

Classified as 
normal

Classified as 
attack

Actual
 Class

Normal Data True Negative 
(TN)

False Negative 
(FN)

Attack Data False Positive 
(FP)

True Positive 
(TP)

(i) Accuracy: Accuracy is the ratio of accurately 
predicted  samples to the total number of predictions.

Accuracy(A) = (TP+TN)
(TP+TN+FP+FN)

*100  (4)

(ii) Precision: Ability to predict correctly.

Precision(P) = TP
TP+FP

*100
( )  (5)

(iii) Recall: Ability to detect correctly.

Recall(R) = TP
(TP+FN)

*100  (6)

(iv) F1-Score: Harmonic mean of precision and  Recall.

F1-Score(F1) = 1

(
1
P
+ 1
R

2
)

*100

 (7)

6. Result Analysis and Discussion
The SAML-PCA approach presents a robust framework 
for discriminating cyberattacks from natural events, and 
no events are represented using tables and graphs. Figure 
3 represents the Triple Class datasets before and after 
the SMOTE operation. Stratified sampling in SMOTE 
considers equal samples from each of the three classes. 
So, the model best fits trained samples, which can be 
evaluated with test samples. 

Table 4 represents the before and after SMOTE operation 
without/with the PCA technique with an 80:20 ratio train-
test split for the four possible combinations. The four possible 
combinations show the importance of SMOTE and PCA by 
comparing them with the performance metrics of accuracy (vs.) 
testing time (execution time). The three labels in the test records 
show the count on each label used where ‘0’ represents Attack, 
‘1’ represents Natural Events, and ‘2’ represents No Events. 
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Figure 3. Represents the dataset with the original 
(imbalanced) and balanced (SMOTE) dataset.

Table 4. Performance comparison before and after SMOTE and without/with PCA technique applied

Possible Combinations With (ET + 
Adaboost) ML Classifier

Training 
Records

Test 
Records

Test Records 
label count

Training 
Time (sec)

Testing 
Time (sec)

Accuracy 
(%)

Imbalanced and All 127 features 62701 15676 0: 11133
1: 3662
2: 881

26.363 0.8663 93.41

Imbalanced and With PCA 62701 15676 0: 11133
1: 3662
2: 881

17.08 0.8782 90.69

Balanced (SMOTE) and All 127 
features

133591 33398 0: 11133
1: 11133
2: 11132

57.31 1.7481 96.59

Balanced (SMOTE) and With PCA 133591 33398 0: 11133
1: 11133
2: 11132

39.83 1.6032 95.28

Figure 4. Accuracy (vs.) Execution Time metric comparison 
with the possible combination of before and after (SMOTE) 
and without/with PCA using (ET+AdB) classifier.

ML Classifiers of Random Forest (RF) and Decision Tree 
(DT) with 94.46% and 88.81% accuracy respectively. The 
other performance metrics of precision, recall, and F1-score 
are also more or less the same with accuracy for both the RF 
and DT Classifier.

Figure 5. Performance metrics comparison across three 
ML Classifiers with SMOTE and PCA applied.

Figure 4 shows the results of four possible 
combinations of accuracy (vs.) execution time. From 
Figure 4, it is inferred that the accuracy of the imbalanced 
data is 93.41% and 90.69%, less than 96.59% and 95.28% 
with SMOTE (balanced). Balanced (SMOTE) with all 127 
features yields a higher accuracy of 96.59% than balanced 
(SMOTE) with a PCA of 95.28%. The testing time of 
balanced (SMOTE) with all 127 features consumes 1.74 
seconds, which is higher than balanced (SMOTE) with 
PCA of 1.60 seconds. The conclusion can be made that 
Balanced (SMOTE) with PCA seems to be better and 
robust, with an Accuracy of 95.28% and a testing time of 
1.60 secs.

Inference from Figure 5 shows that the (ExtraTrees + 
AdaBoost) Classifier achieves higher accuracy, precision, 
recall, and F1-score of 95.28% compared to the other three 
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Figure 6. Accuracy (vs.) execution time metric across 
three ML Classifiers with SMOTE and PCA applied. 

Table 5. Accuracy metric comparison of the proposed approach with the existing work

Reference 
paper

Feature 
selection/
extraction

Number 
of features 

selection (or) 
extraction

Machine 
learning 

classifiers

Accuracy 
(%)

Pros/cons of the techniques used in the existing 
work and compared with our proposed work of 

SAML-PCA

Borges et al.9 
(Original 
author 
dataset)

Information 
gain

40 Adaboost 
+ JRipper

95.00 • Only 1% of randomly sampled records 
from the 15 datasets were tested and the handling of 
“INFinity” seen attack records was not specified.

Ankitdesh 
pandeyand 
Karthi10 

PCA 31 Random 
Forest

91.14 • Tested for reduced samples of 4400 records 
from each of the three classes. Lack of model robustness 
with untrained entire samples and not specified about 
handling “INFinity” seen attack records.

Mohan and 
Sankaran11

Manually 
selected 
features 
using Power 
Domain 
Knowledge

36 Rule-
Based 
+ ML 
Classifier 
(Random 
Forest)

97.25 • Feature Selection is done manually with Power 
System Domain knowledge selecting the features (+ve, 
-ve, Zero Seq. Components and Logs). This model 
cannot be generalizable and scalable for different 
architectures and requires complex logical calculations. 
• Not Specified about the handling of 
“INFinity” seen attack records.

SAML-PCA 
(Proposed 
Work)

PCA with 
SMOTE

35 (ET + 
AdB) 

95.28 • Our proposed statistical approach is robust 
enough to discriminate cyberattacks with high 
accuracy and reasonable execution time. 
• This model can also be extended to different 
architectures for scalability since it deals statistically 
with data.
• “INFinity” seen attack records “Apparent 
impedance” Relay feature are handled by replacing 
them with ZERO to avoid missing rates. 

with an execution time of 1.603 secs. Meanwhile, RF achieves 
94.46% with 0.661 secs execution time and DT with 88.81% 
accuracy with 0.014 secs execution time. Even though the 
execution time of (ExtraTrees + AdaBoost) is slightly higher 
than RF and DT, better and more robust performance metrics 
are achieved through the (ExtraTrees + AdaBoost) Classifier. 

Table 5 represents the accuracy metric comparison of the 
proposed approach of SAML-PCA with the existing work of 
Pros and Cons discussed in detail. The proposed approach of 
SAML-PCA is robust enough to discriminate cyberattacks 
with higher accuracy compared to the existing approaches. 
Specifically, we addressed the problem of “INFinity,” seen 
attack records are handled by replacing with ZERO to avoid 
missing rates. Other existing approaches have not addressed 
the missing rates.

 Inference from Figure 6 shows that the (ExtraTrees + 
AdaBoost) Classifier achieves a higher accuracy of 95.28% 
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7. Conclusion and Future Work
The smart grid’s mission-critical infrastructure requires 
more attention, where a few misclassifications of 
cyberattack incidents might create fatal consequences 
for the power system’s stability and reliability, leading to 
blackouts and cascading failures. 

The proposed framework of Statistical Approach with a 
Machine Learning classifier based on Principal Component 
Analysis (SAML-PCA) with SMOTE, ExtraTrees, and 
AdaBoost Machine Learning Classifier with optimal 
hyperparameters tuning achieved a higher accuracy of 
95.28% with execution time of 1.60 secs. The SAML-PCA 
provides a robust solution to address the missing rate with 
early discrimination of cyberattacks from natural events 
and no events in the smart grid. The proposed model can 
be extendable to future work by optimizing the features. 
Further, the scalability of the IEEE ‘N’ bus system can be 
adopted for different architectures.
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